[PeterDLax著泛函分析习题参考解答]第1章 线性空间
1. 证明定理 1.
2. 验证上述结论.
3. 证明定理 3.
4. 证明定理 4.
证明: 由 $$\bex x=\sum_{k=1}^{n-1}a_k\cdot \sum_{j=1}^{n-1}\cfrac{a_j}{\sum_{k=1}^{n-1}a_k}x_j+a_nx_n \eex$$ 及数学归纳法即知结论.
5. 证明定理 5.
证明: 仅证明 (iv). 设 $A,B$ 为两凸子集, 则对 $$\bex \forall\ x+y,u+v\in A+B, \eex$$ 有 $$\beex \bea a(x+y)+(1-a)(u+v)&=[ax+(1-a)u]+[ay+(1-a)v]\\ &\in A+B\quad\sex{\forall\ 0\leq a\leq 1}. \eea \eeex$$
6. 证明定理 6.
7. 证明定理 7.
证明: 设 $$\bex F\ni x=\cfrac{y+z}{2},\quad y,z\in K. \eex$$ 由 $E$ 是 $K$ 的极子集知 $$\bex y,z\in E. \eex$$ 又由 $F$ 是 $E$ 的极子集知 $$\bex y,z\in F. \eex$$
8. 证明定理 8.
证明: 若 ${\bf M}^{-1}(E)\neq \vno$, 则由习题 5 (ix), ${\bf M}^{-1}( E)$ 是 ${\bf M}^{-1}(K)$ 的非空凸集. 设 $$\bex {\bf M}^{-1}(E)\ni x=\cfrac{y+z}{2},\quad y,z\in{\bf M}^{-1}(K), \eex$$ 则 $$\bex E\ni {\bf M}(x)=\cfrac{{\bf M}(y)+{\bf M}(z)}{2},\quad {\bf M}(x),{\bf M}(y)\in K. \eex$$ 由 $E$ 是 $K$ 的极子集知 $$\bex {\bf M}(y),{\bf M}(z)\in E, \eex$$ 而 $$\bex y,z\in {\bf M}^{-1}(E). \eex$$
9. 举例说明极子集在线性映射下的象未必是象的极子集.
解答: 取 $X=\bbR^2$, $U=\bbR$; $K$ 为梯形, 其顶点为 $(-1,0)$, $(2,0)$, $(1,1)$, $(0,1)$; $E$ 为 $K$ 的上底; ${\bf M}:X\to U$ 为 ${\bf M}(x,y)=x$. 则 ${\bf M}(E)=[0,1]$ 不是 ${\bf M}(K)$ 的极子集.
[PeterDLax著泛函分析习题参考解答]第1章 线性空间的更多相关文章
- [PeterDLax著泛函分析习题参考解答]第2章 线性映射
1. 验证两个线性映射的复合仍是线性映射而且满足分配律: $$\bex {\bf M}({\bf N}+{\bf K})={\bf M}{\bf N}+{\bf M}{\bf K},\quad ({\ ...
- [PeterDLax著泛函分析习题参考解答]第6章 Hilbert 空间
1. 证明满足 (6) 的范数可以由一个内积诱导出来. 这个结论属于 von Neumann. 证明: 以实线性空间为例, 取内积 $$\bex \sex{x,y}=\cfrac{1}{4}[\sen ...
- [PeterDLax著泛函分析习题参考解答]第5章 赋范线性空间
1. (a) 证明 (6) 定义了范数. (b) 证明它们在 (5) 式意义下是等价的. 证明: $$\bex |(z,u)|'\leq |(z,u)|\leq 2|(z,u)|',\quad |(z ...
- [PeterDLax著泛函分析习题参考解答]第7章 Hilbert 空间结果的应用
1. 对测度是 $\sigma$ 有限的情形证明 Radon-Nikodym 定理. 证明: 设 $\mu,\nu$ 均为 $\sigma$ 有限的非负测度, 则存在分割 $$\bex X=\cup_ ...
- [PeterDLax著泛函分析习题参考解答]第4章 Hahn-Bananch 定理的应用
1. 证明: 若在 4.1 节中取 $S=\sed{\mbox{正整数}}$, $Y$ 是收敛数列构成的空间, $\ell$ 由 (14) 式定义, 则由 (4) 给出的 $p$ 和由 (11) 定义 ...
- [PeterDLax著泛函分析习题参考解答]第3章 Hahn-Banach 定理
1. 证明 $(10'$). 证明: $\ra$: 由 $p_K(x)<1$ 知 $$\bex \exists\ 0<a<1,\st \cfrac{x}{a}\in K. \eex$ ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
随机推荐
- swift入门-day01-基本语法
主要内容: 1.常量和变量 2.Optional 3.控制流 4.循环 5.字符串 6.集合 变量和常量 定义 let 定义常量,一经赋值不允许再修改 var 定义变量,赋值之后仍然可以修改 自动推导 ...
- struts2框架加载配置文件的顺序
struts-default.xml:该文件保存在struts2-core-x.x.x.jar文件中: struts-plugin.xml:该文件保存在 struts2-Xxx-x.x.x.jar等S ...
- addLoadEvent函数
首先是addLoadEvent函数的代码清单: function addLoadEvent(func){ var oldonload=window.onload; if(typeof wi ...
- 08_使用TCP/IP Monitor监视SOAP协议
[SOAP定义] SOAP 简单对象访问协议,基于http传输xml数据,soap协议体是xml格式.SOAP 是一种网络通信协议SOAP 即Simple Object Access Pr ...
- error signing assembly unknown error
用VS2010 编译 C#工程,出现 Cryptographic failure while signing assembly 'Assembly.dll' -- 'Unknown error (80 ...
- nginx 自定义代理返回 404
在nginx的http段,加上一面的配置 proxy_intercept_errors on;//自定义代理返回的404错误提示
- sort对象数组排序
function objectSort(property, desc) { //降序排列 if (desc) { return function (a, b) { return (a[property ...
- HTML5格式化
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- PHP优化小结
1.echo 比 print 快,并且使用echo的多重参数(指用逗号而不是句点)代替字符串连接,比如echo $str1,$str2.如果使用echo $str1.$str2 就会需要 PHP 引擎 ...
- php操作memcache的用法、详解和方法介绍
1.简介 memcache模块是一个高效的守护进程,提供用于内存缓存的过程式程序和面向对象的方便的接口,特别是对于设计动态web程序时减少对数据库的访问. memcache也提供用于通信对话(sess ...