1. 证明定理 1.

2. 验证上述结论.

3. 证明定理 3.

4. 证明定理 4.

证明: 由 $$\bex x=\sum_{k=1}^{n-1}a_k\cdot \sum_{j=1}^{n-1}\cfrac{a_j}{\sum_{k=1}^{n-1}a_k}x_j+a_nx_n \eex$$ 及数学归纳法即知结论.

5. 证明定理 5.

证明: 仅证明 (iv). 设 $A,B$ 为两凸子集, 则对 $$\bex \forall\ x+y,u+v\in A+B, \eex$$ 有 $$\beex \bea a(x+y)+(1-a)(u+v)&=[ax+(1-a)u]+[ay+(1-a)v]\\ &\in A+B\quad\sex{\forall\ 0\leq a\leq 1}. \eea \eeex$$

6. 证明定理 6.

7. 证明定理 7.

证明: 设 $$\bex F\ni x=\cfrac{y+z}{2},\quad y,z\in K. \eex$$ 由 $E$ 是 $K$ 的极子集知 $$\bex y,z\in E. \eex$$ 又由 $F$ 是 $E$ 的极子集知 $$\bex y,z\in F. \eex$$

8. 证明定理 8.

证明: 若 ${\bf M}^{-1}(E)\neq \vno$, 则由习题 5 (ix), ${\bf M}^{-1}( E)$ 是 ${\bf M}^{-1}(K)$ 的非空凸集. 设 $$\bex {\bf M}^{-1}(E)\ni x=\cfrac{y+z}{2},\quad y,z\in{\bf M}^{-1}(K), \eex$$ 则 $$\bex E\ni {\bf M}(x)=\cfrac{{\bf M}(y)+{\bf M}(z)}{2},\quad {\bf M}(x),{\bf M}(y)\in K. \eex$$ 由 $E$ 是 $K$ 的极子集知 $$\bex {\bf M}(y),{\bf M}(z)\in E, \eex$$ 而 $$\bex y,z\in {\bf M}^{-1}(E). \eex$$

9. 举例说明极子集在线性映射下的象未必是象的极子集.

解答: 取 $X=\bbR^2$, $U=\bbR$; $K$ 为梯形, 其顶点为 $(-1,0)$, $(2,0)$, $(1,1)$, $(0,1)$; $E$ 为 $K$ 的上底; ${\bf M}:X\to U$ 为 ${\bf M}(x,y)=x$. 则 ${\bf M}(E)=[0,1]$ 不是 ${\bf M}(K)$ 的极子集.

[PeterDLax著泛函分析习题参考解答]第1章 线性空间的更多相关文章

  1. [PeterDLax著泛函分析习题参考解答]第2章 线性映射

    1. 验证两个线性映射的复合仍是线性映射而且满足分配律: $$\bex {\bf M}({\bf N}+{\bf K})={\bf M}{\bf N}+{\bf M}{\bf K},\quad ({\ ...

  2. [PeterDLax著泛函分析习题参考解答]第6章 Hilbert 空间

    1. 证明满足 (6) 的范数可以由一个内积诱导出来. 这个结论属于 von Neumann. 证明: 以实线性空间为例, 取内积 $$\bex \sex{x,y}=\cfrac{1}{4}[\sen ...

  3. [PeterDLax著泛函分析习题参考解答]第5章 赋范线性空间

    1. (a) 证明 (6) 定义了范数. (b) 证明它们在 (5) 式意义下是等价的. 证明: $$\bex |(z,u)|'\leq |(z,u)|\leq 2|(z,u)|',\quad |(z ...

  4. [PeterDLax著泛函分析习题参考解答]第7章 Hilbert 空间结果的应用

    1. 对测度是 $\sigma$ 有限的情形证明 Radon-Nikodym 定理. 证明: 设 $\mu,\nu$ 均为 $\sigma$ 有限的非负测度, 则存在分割 $$\bex X=\cup_ ...

  5. [PeterDLax著泛函分析习题参考解答]第4章 Hahn-Bananch 定理的应用

    1. 证明: 若在 4.1 节中取 $S=\sed{\mbox{正整数}}$, $Y$ 是收敛数列构成的空间, $\ell$ 由 (14) 式定义, 则由 (4) 给出的 $p$ 和由 (11) 定义 ...

  6. [PeterDLax著泛函分析习题参考解答]第3章 Hahn-Banach 定理

    1. 证明 $(10'$). 证明: $\ra$: 由 $p_K(x)<1$ 知 $$\bex \exists\ 0<a<1,\st \cfrac{x}{a}\in K. \eex$ ...

  7. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  8. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  9. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

随机推荐

  1. thinkphp 行为扩展

    网站程序在运行的过程每个过程都可以看做是一种行为,例如:运行应用,加载类,执行方法,加载模板,解析模板等,也就是说,我们在程序执行过程中每个 步骤都可以 定义一些点,我们可以在运行 程序的时候 检查 ...

  2. java PropertyChangeSupport委托帧听类的使用

    要委托的Bean类写法. import java.beans.PropertyChangeEvent; import java.beans.PropertyChangeListener; import ...

  3. C语言——N个人围成一圈报数淘汰问题

    <一>问题描述: 有17个人围成一圈(编号为0-16),从第 0号的人开始从 1报数, 凡报到 3的倍数的人离开圈子,然后再数下去,直到最后只剩下一个人为止. 问此人原来的位置是多少号? ...

  4. UVA 11995 I Can Guess the Data Structure!(ADT)

    I Can Guess the Data Structure! There is a bag-like data structure, supporting two operations: 1 x T ...

  5. 暑假集训(1)第四弹 -----Find a way(Hdu2612)

    Description Pass a year learning in Hangzhou, yifenfei arrival hometown Ningbo at finally. Leave Nin ...

  6. c# winform textbox与combox让用户不能输入

    textbox的ReadOnly属性设置为true combox的Enable属性设置为false 运行后效果如下 点击第一个和第二个,会把按钮text赋值给文本框和combox 并且用户不能输入

  7. redis的安装-windows和linux

    windows 下载地址:http://code.google.com/p/servicestack/wiki/RedisWindowsDownload 下载解压到D盘下: 进到该目录下,有下列文件: ...

  8. POJ 2002 Squares 哈希

    题目链接: http://poj.org/problem?id=2002 #include <stdio.h> #include <string.h> ; struct Has ...

  9. 【web安全】第五弹:burpsuite proxy模块的一些理解

    作为一只小小小白的安全新手,只会简单的用sqlmap扫扫网站,用burpsuite的proxy模块拦截一些请求.最近又对proxy有点儿小理解,记录之. 1. 查看sqlmap注入的语句以及HTTP ...

  10. ipad在非viewport 1:1下缩放问题

    1.最小会有980宽度,小于980应设置viewport 2.fix元素使用100%指定宽度时,默认会以min-width或980作为尺寸,可以选择给定与页面缩放时触发定宽来设置宽度,或设置设置bod ...