【Deep Learning学习笔记】Dynamic Auto-Encoders for Semantic Indexing_Mirowski_NIPS2010
发表于NIPS2010 workshop on deep learning的一篇文章,看得半懂。
主要内容:
是针对文本表示的一种方法。文本表示可以进一步应用在文本分类和信息检索上面。通常,一篇文章表示为V大小的一个向量,|V|是词表的大小。传统的方法,向量中每个值是tf/idf计算得到的权重。不过|V|比较大的时候,对于文本分类和信息检索来讲,时空复杂度都比较大。这时候需要对|V|进行降维。通常的方法是LDA系列的方法,将文章表示成若干个topic上面的分布。不过实验效果并不好。本文作者用deep stack auto-encoders来做。
具体做法:
构建deep stack auto-encoders。输入还是bag of words想法,即用|V|的词语向量来做。向量的每个维度是词表中的词语,取值采用了归一化的词语在文章中的出现次数,对于没有出现在文章中的词语,采用了类似ngram模型中的加法平滑,也给一个很小的数值。在这种输入的情况下,做auto-encoders,来训练神经网络。隐含层的维数要远小于|V|,从而达到降维的目的。在auto-encoders的基础上,在训练分类器g,以配合实际应用,如:文本分类。
注意,这时候,每个输入就是 一篇文章(所形成的|V|维向量),输入的顺序是随机的,即在文章集合中随机游走。另外,auto-encoders的能量函数还可以再加上网络本身权重的L1或者L2范式。
用训练好的神经网络来计算test corpus中文章的迷惑度。
这个看的不是太懂。感觉大概是这样的过程:把test corpus中的文章,先表示成|V|的向量形式,然后用训练好的deep stack auto-encoders进行encode和decode,而decode的结果作为这篇文章在整个词语集合V上的词语概率分布(需要加入softmax层),在这个分布上,就可以计算文章的迷惑度了。
在实验中,这种计算出来的迷惑度比LDA(用相似过程)计算出来的迷惑度要小,所以性能要高。
在实验中,还用股市预测来验证auto-encoders,即分析股市相关新闻的倾向性,从而判断股票走向。写的不多,没看懂具体怎么做的。
【Deep Learning学习笔记】Dynamic Auto-Encoders for Semantic Indexing_Mirowski_NIPS2010的更多相关文章
- 【deep learning学习笔记】注释yusugomori的DA代码 --- dA.h
DA就是“Denoising Autoencoders”的缩写.继续给yusugomori做注释,边注释边学习.看了一些DA的材料,基本上都在前面“转载”了.学习中间总有个疑问:DA和RBM到底啥区别 ...
- [置顶]
Deep Learning 学习笔记
一.文章来由 好久没写原创博客了,一直处于学习新知识的阶段.来新加坡也有一个星期,搞定签证.入学等杂事之后,今天上午与导师确定了接下来的研究任务,我平时基本也是把博客当作联机版的云笔记~~如果有写的不 ...
- Deep Learning 学习笔记(8):自编码器( Autoencoders )
之前的笔记,算不上是 Deep Learning, 只是为理解Deep Learning 而需要学习的基础知识, 从下面开始,我会把我学习UFDL的笔记写出来 #主要是给自己用的,所以其他人不一定看得 ...
- 【deep learning学习笔记】Recommending music on Spotify with deep learning
主要内容: Spotify是个类似酷我音乐的音乐站点.做个性化音乐推荐和音乐消费.作者利用deep learning结合协同过滤来做音乐推荐. 详细内容: 1. 协同过滤 基本原理:某两个用户听的歌曲 ...
- 【deep learning学习笔记】注释yusugomori的RBM代码 --- 头文件
百度了半天yusugomori,也不知道他是谁.不过这位老兄写了deep learning的代码,包括RBM.逻辑回归.DBN.autoencoder等,实现语言包括c.c++.java.python ...
- Neural Networks and Deep Learning学习笔记ch1 - 神经网络
近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的. ...
- paper 149:Deep Learning 学习笔记(一)
1. 直接上手篇 台湾李宏毅教授写的,<1天搞懂深度学习> slideshare的链接: http://www.slideshare.net/tw_dsconf/ss-62245351? ...
- Deep Learning 学习笔记——第9章
总览: 本章所讲的知识点包括>>>> 1.描述卷积操作 2.解释使用卷积的原因 3.描述pooling操作 4.卷积在实践应用中的变化形式 5.卷积如何适应输入数据 6.CNN ...
- 【deep learning学习笔记】最近读的几个ppt(四)
这几个ppt都是在微博上看到的,是百度的一个员工整理的. <Deep Belief Nets>,31页的一个ppt 1. 相关背景 还是在说deep learning好啦,如特征表示云云. ...
随机推荐
- 【POJ3237】【树链剖分】Tree
Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...
- jQuery慢慢啃之核心(一)
1. $("div > p"); div 元素的所有p子元素. $(document.body).css( "background", "bla ...
- 用jQuery实现瀑布流效果学习笔记
jQuery一直没系统的学,只知道是js库,封装了好多js函数,方便了开发.以前做过一个原生的图片网站瀑布流效果,超级麻烦,这次用了jQuery方法,瞬间代码浓缩了,只有56行js代码.神奇的让我来把 ...
- iOS适配:Masonry介绍与使用实践:快速上手Autolayout
随着iPhone的手机版本越来越多, 那么对于我们广大的开发者来说就是很悲催,之前一直使用代码里面layout的约束来适配, 现在推荐一个第三方Masonry,上手块,操作简单,只能一个字形容他 “爽 ...
- 在Linux终端执行clear或top命令时出现:'xterm': unknown terminal type
在Linux终端执行clear或top命令时出现:'xterm': unknown terminal type的错误. 例如: [root@localhost phpmyadmin]# clear ' ...
- Android中AppWidget的分析与应用:AppWidgetProvider .
from: http://blog.csdn.net/thl789/article/details/7887968 本文从开发AppWidgetProvider角度出发,看一个AppWidgetPrv ...
- 简明解释算法中的大O符号
伯乐在线导读:2009年1月28日Arec Barrwin在StackOverflow上提问,“有没有关于大O符号(Big O notation)的简单解释?尽量别用那么正式的定义,用尽可能简单的数学 ...
- (转载)50个c/c++源代码网站
C/C++是最主要的编程语言.这里列出了50名优秀网站和网页清单,这些网站提供c/c++源代码.这份清单提供了源代码的链接以及它们的小说明.我已 尽力包括最佳的C/C++源代码的网站.这不是一个完整的 ...
- 转: 静态模式makefile中$(cobjs): $(obj)/%.o: $(src)/%.c
4.12 静态模式静态模式规则是这样一个规则:规则存在多个目标,并且不同的目标可以根据目标文件的名字来自动构造出依赖文件.静态模式规则比多目标规则更通用,它不需要多个目标具有相同的依赖.但是静态模式规 ...
- BZOJ 3572 世界树
Description 世界树是一棵无比巨大的树,它伸出的枝干构成了整个世界.在这里,生存着各种各样的种族和生灵,他们共同信奉着绝对公正公平的女神艾莉森,在他们的信条里,公平是使世界树能够生生不息.持 ...