Description

There is an old country and the king fell in love with a devil. The devil always asks the king to do some crazy things. Although the king used to be wise and beloved by his people. Now he is just like a boy in love and can’t refuse any request from the devil. Also, this devil is looking like a very cute Loli.
 
After the ring has been destroyed, the devil doesn't feel angry, and she is attracted by z*p's wisdom and handsomeness. So she wants to find z*p out.
 
But what she only knows is one part of z*p's DNA sequence S leaving on the broken ring.
 
Let us denote one man's DNA sequence as a string consist of letters from ACGT. The similarity of two string S and T is the maximum common subsequence of them, denote by LCS(S,T).
 
After some days, the devil finds that. The kingdom's people's DNA sequence is pairwise different, and each is of length m. And there are 4^m people in the kingdom.
 
Then the devil wants to know, for each 0 <= i <= |S|, how many people in this kingdom having DNA sequence T such that LCS(S,T) = i.
 
You only to tell her the result modulo 10^9+7.

Input

The first line contains an integer T, denoting the number of the test cases.
For each test case, the first line contains a string S. the second line contains an integer m.
 
T<=5
|S|<=15. m<= 1000.

Output

For each case, output the results for i=0,1,...,|S|, each on a single line.

Sample Input

1
GTC
10

Sample Output

1
22783
528340
497452
 
题解:
我们先考虑给定T和S,如何去求他们的lcs
显然我们会设g[i][j]表示T[1..i]和S[1..j]的lcs
所以g[i][j]=max(g[i-1][j],g[i][j-1],(g[i-1][j-1]+1)*(T[i]==S[j]))
我们发现g数组有两个性质
1.g[i][j]只和上一行和这一行有关
2.对于任意的i,j,有g[i][j]-g[i][j-1]=0或1
而且这题的|S|=15,这启示我们可以将j那一维状态压缩一下,用一个二进制数存储相邻两项的差值即可
设trans[sta][c]表示T已经匹配了若干位的状态为sta,假如下一位为c,状态会变为trans[sta][c]
这个可以O(n*2n)预处理出来
然后在设f[i][sta]表示T已经匹配到了i位,状态为sta的方案数,利用一下trans数组进行转移(记得要滚动数组),这个复杂度为O(m*2n)
code:
 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
const int maxm=;
const int maxstate=;
const int mod=;
const char dna[]={'A','C','G','T'};
char s[maxn];
int T,n,m,lim,cnt[maxstate];
int cur[maxn],g[maxn],trans[maxstate][],f[][maxstate],ans[maxn];
void work(){
for (int sta=;sta<lim;sta++){
for (int i=;i<=n;i++) cur[i]=cur[i-]+((sta>>(i-))&);
for (int c=;c<;c++){
for (int i=;i<=n;i++) g[i]=;
for (int i=;i<=n;i++){
g[i]=max(g[i-],cur[i]);
if (s[i]==dna[c]) g[i]=max(g[i],cur[i-]+);
}
int res=;
for (int i=;i<=n;i++) if (g[i]>g[i-]) res|=(<<(i-));
trans[sta][c]=res;
}
}
memset(f[],,sizeof(f[]));
f[][]=;
for (int i=;i<=m;i++){
memset(f[i&],,sizeof(f[i&]));
for (int sta=;sta<lim;sta++) if (f[(i-)&][sta])
for (int c=;c<;c++) f[i&][trans[sta][c]]+=f[(i-)&][sta],f[i&][trans[sta][c]]%=mod;
}
memset(ans,,sizeof(ans));
for (int sta=;sta<lim;sta++) ans[cnt[sta]]+=f[m&][sta],ans[cnt[sta]]%=mod;
for (int i=;i<=n;i++) printf("%d\n",ans[i]);
}
int main(){
for (int i=;i<;i++) cnt[i]=cnt[i&(i-)]+;
for (scanf("%d",&T);T;T--) scanf("%s%d",s+,&m),n=strlen(s+),lim=<<n,work();
return ;
}

bzoj3864: Hero meet devil的更多相关文章

  1. BZOJ3864: Hero meet devil(dp套dp)

    Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 397  Solved: 206[Submit][Status][Discuss] Description ...

  2. BZOJ3864: Hero meet devil【dp of dp】

    Description There is an old country and the king fell in love with a devil. The devil always asks th ...

  3. bzoj千题计划241:bzoj3864: Hero meet devil

    http://www.lydsy.com/JudgeOnline/problem.php?id=3864 题意: 给你一个DNA序列,求有多少个长度为m的DNA序列和给定序列的LCS为0,1,2... ...

  4. 【BZOJ3864】Hero meet devil DP套DP

    [BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...

  5. bzoj 3864: Hero meet devil [dp套dp]

    3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...

  6. BZOJ3864 & HDU4899:Hero meet devil——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3864 http://acm.hdu.edu.cn/showproblem.php?pid=4899 ...

  7. HDU 4899 Hero meet devil(状压DP)(2014 Multi-University Training Contest 4)

    Problem Description There is an old country and the king fell in love with a devil. The devil always ...

  8. HDU 4899 Hero meet devil (状压DP, DP预处理)

    题意:给你一个基因序列s(只有A,T,C,G四个字符,假设长度为n),问长度为m的基因序列s1中与给定的基因序列LCS是0,1......n的有多少个? 思路:最直接的方法是暴力枚举长度为m的串,然后 ...

  9. bzoj 3864: Hero meet devil

    bzoj3864次元联通们 第一次写dp of dp (:з」∠) 不能再颓废啦 考虑最长匹配序列匹配书转移 由于dp[i][j]的转移可由上一行dp[i-1][j-1],dp[i-1][j],dp[ ...

随机推荐

  1. 如何制作iso文件

    UltraISO 9.6.2.3059中文完美破解安装版 http://www.upantool.com/qidong/2011/UltraISO_v9.5.0.2800.html 软碟通v9.6.2 ...

  2. Memo打印

        加入Printers单元, ;   Left ;    y ;; do      begin        Printer.Canvas.TextOut(x,y,Memo1.Lines[i]) ...

  3. LCA在线算法ST算法

    求LCA(近期公共祖先)的算法有好多,按在线和离线分为在线算法和离线算法. 离线算法有基于搜索的Tarjan算法较优,而在线算法则是基于dp的ST算法较优. 首先说一下ST算法. 这个算法是基于RMQ ...

  4. 读取一个文件,将其Base64编码,每76个字符加一个换行(转)

    echo chunk_split(base64_encode(file_get_contents('base64.txt'))); 例子 1 本例分隔每个字符,并添加 ".": & ...

  5. OOP 概述

    面向对象程序设计基于四个基本概念:数据抽象.封装.继承和动态绑定. 类的基本思想是数据抽象和封装. 1 数据抽象 数据抽象是一种依赖于接口和实现分离的编程技术.类的接口包括用户所能执行的操作:类的实现 ...

  6. MySQL Handling of GROUP BY--官方文档

    In standard SQL, a query that includes a GROUP BY clause cannot refer to nonaggregated columns in th ...

  7. PetaPoco 存储过程

    1 执行不带参数的存储过程 public List<dynamic> ceshiProc() { string sql = @"EXEC [dbo].[p_ceshi1]&quo ...

  8. 详细查看数据库SQL执行计划

    DBCC DROPCLEANBUFFERS 清除数据缓存DBCC FREEPROCCACHE  清除执行计划缓存 SET SHOWPLAN_XML ON 此语句导致 SQL Server 不执行 Tr ...

  9. mysql locktables

    SELECT      r.trx_id waiting_trx_id,      r.trx_mysql_thread_id waiting_thread,      TIMESTAMPDIFF(  ...

  10. strut2.xml中result param详细设置

    1.Struts2.xml配置文件: 2.Jsp中:说明回调函数一个参数即可.把上面的俩个参数msg和page封装到一起了 3.msg是Action中全局变量 可参考:http://qiaolevip ...