NYOJ 116士兵杀敌(二) 树状数组
题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=116
士兵杀敌(一) 数组是固定的,所以可以用一个sum数组来保存每个元素的和就行,但是不能每次都加,因为那样会超时,查询次数太多。但是这个士兵杀敌(二)就不能用那个方法来解了,因为这个是动态的,中间元素的值可能会变化,所以引出一个新的东西来。刚开始想了一下,实在是没有想到方法,就去讨论区看了看,一看好像都说用树状数组,就去找树状数组的用法。
先上图,看着图解释容易理解点。

数组A是原数组中的元素,数组C是树状数组中的元素,图中C数组的元素组成为A中的某些元素之和,这些元素的个数取决于它的下标能被多少个2整除,像C[1] = A[1]; C[2] = A[1] + A[2]; C[3] = A[3]; C[4] = A[1] + A[2] + A[3] + [4] = C[2] + C[3]; ……这些个数可以写一个通式C[i] = A[n - 2^k + 1] + ……+A[i]; 其中k为 i 的二进制中从右往左数的 0 的个数 ,就像6有一个, 6可以写成 2 × 3, 所以C[6] = A[5] + A[6]; 所以可以定义一个函数来求这个数.
6的二进制为0110
5的二进制为0101
6^5 = 0011
6&(6^5) = 0010 = 十进制中的2
所以函数可以这么写
int lowbit(int N)//求n中有多少个能被2的多少次幂整除的,即2^k, 也就是树状数组的作用域
{
return N & (N ^ (N - ));
}
也可以写成
int lowbit(int N)//求n中有多少个能被2的多少次幂整除的,即2^k, 也就是树状数组的作用域
{
return N & (-N);
}
更改一个数的值, 就要更改次数在树状数组中的所有祖先,不过这个时间复杂度是O(logn); 下面是更改值(添加杀敌数)的函数
void add(int pos, int num)//添加新值到树状数组中
{
while(pos <= n)
{
tmp[pos] += num;
pos += lowbit(pos);
}
}
下面就是求和函数, 因为这种方法之所以快,是求他的最小树根节点的和, 最小树的个数为当前要求的n的二进制中为1的个数,即展开式中能写成不同2的幂指数的项数,
例如: 15 = 2^3 + 2^2 + 2^1 + 2^0; 所以n = 15时, 最小数有四个,求和的时间复杂度为O(logn);
int Sum(int N)//求前N个数的和
{
int sum = ;
while(N > )
{
sum += tmp[N];
N -= lowbit(N);
}
return sum;
}
关键就是这三步, 这三步搞明白了,基本上就不成问题了,但是,当时按照 杀敌(一) 中的思维,还统计了一个总数,那样不会快,反而会慢,所以直接求就行,下面是完整的代码
#include <stdio.h>
#include <string.h> int tmp[];
int n, k; int lowbit(int N)//求n中有多少个能被2的多少次幂整除的,即2^k, 也就是树状数组的作用域
{
return N & (-N);
} void add(int pos, int num)//添加新值到树状数组中
{
while(pos <= n)
{
tmp[pos] += num;
pos += lowbit(pos);
}
} int Sum(int N)//求前N个数的和
{
int sum = ;
while(N > )
{
sum += tmp[N];
N -= lowbit(N);
}
return sum;
} int main()
{
int a, b, temp;
char str[];
scanf("%d %d", &n, &k);
for(int i = ; i <= n; i++)
{
scanf("%d", &temp);
add(i, temp);
}
for(int i = ; i < k; i++)
{
scanf("%s %d %d", str, &a, &b);
if(strcmp(str, "QUERY") == )
printf("%d\n", Sum(b) - Sum(a - ));
else
add(a, b);
} return ;
}
NYOJ 116士兵杀敌(二) 树状数组的更多相关文章
- NYOJ 116 士兵杀敌二
士兵杀敌(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:5 描述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的. 小工是南将军手下的军师,南将军经常 ...
- NYOJ 116 士兵杀敌 (线段树,区间和)
题目链接:NYOJ 116 士兵杀敌 士兵杀敌(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:5 描写叙述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的 ...
- NYOJ 116 士兵杀敌(二)【线段树 单点更新】
题意:题意非常清楚: 策略:如题. 这道题就是简单的线段树应用,据说还能够用树状数组来做,等我学了之后在说吧. 代码: #include<stdio.h> #include<stri ...
- NYOJ 231 Apple Tree (树状数组)
题目链接 描述 There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in t ...
- NYOJ 116 士兵杀敌(二) (树状数组)
题目链接 描述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的.小工是南将军手下的军师,南将军经常想知道第m号到第n号士兵的总杀敌数,请你帮助小工来回答南将军吧.南将军的某次询问之后 ...
- nyoj 116 士兵杀敌(二)【线段树单点更新+求和】
士兵杀敌(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:5 描述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的. 小工是南将军手下的军师,南将军经常 ...
- nyoj 116 士兵杀敌(二)(线段树、单点更新)
士兵杀敌(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:5 描述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的. 小工是南将军手下的军师,南将军经常 ...
- NYOJ 116 士兵杀敌(二)(二叉索引树)
http://acm.nyist.net/JudgeOnline/problem.php?pid=116 题意: 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的. 小工是南将军手下的 ...
- hdoj-4417(做法二 树状数组离线解法,对所有的查询先保存进行排序后有序的查询) 好腻害!
#include<cstdio> #include<cstring> #include<algorithm> using namespace std;; ; str ...
随机推荐
- ubuntu用户及用户组文件信息
1.用户帐号文件 /etc/passwd中存放当前系统的用户列表及用户基本的设置信息: 文件中每一行对应一个用户信息,用户信息用":"来分隔,各项内容含义如下: 用户名:用户密码: ...
- ActiveReports 交互式报表之向下钻取解决方案
在 ActiveReports 中可以动态的显示或者隐藏某区域的数据,通过该功能用户可以根据需要显示或者隐藏所关心的数据,结合数据排序.过滤等功能可以让用户更方便地分析报表数据. 本文中展示的是销售数 ...
- 百度上传插件WebUploader,angularjs指令封装
1.WebUploader特点 官网地址:http://fex.baidu.com/webuploader/ 1.1 分片.并发 分片与并发结合,将一个大文件分割成多块,并发上传,极大地提高大文件的上 ...
- linux修改环境变量
/etc/profile 系统全局环境变量设定,所有用户共享,修改后,需要重启系统才能生效 ~/.bash_profile,~/.bashrc 用户目录下的私有环境变量设定,常用来个性化定制功能,修改 ...
- MVC中的UrlHelper
authour: chenboyi updatetime: 2015-04-27 22:32:47 friendly link: 1,CodeSimple: ps:因为UrlHelper涉及的知识 ...
- Activity完整的生命周期
首语:群里看到一位网友说:你能说出Activity的完整生命周期吗?看到这句话,我也在反思自己,我也是个fresh,所以想找个时间仔细的扒一扒Activity生命周期. 首先拿一张简单而又复杂的生命周 ...
- springmvc参数类型转换三种方式
SpringMVC绑定参数之类型转换有三种方式: 1. 实体类中加日期格式化注解 @DateTimeFormat(pattern="yyyy-MM-dd hh:MM&quo ...
- 最近点对问题 HDU Quoit Design 1007 分治法
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #i ...
- 【动态规划】XMU 1560 新ACM规则
题目链接: http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1560 题目大意: 给定n(n<=200)个任务及每个任务的耗时,问m(m< ...
- delphi 通过控件的handle取得控件
例子代码如下: vartsg:TstringGrid;begintsg:=Tstringgrid(FindControl(handle));//正常使用TstringGrid//tsg......./ ...