在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录。
据百度百科介绍:
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
  例如将kitten一字转成sitting:
  sitten (k→s)
  sittin (e→i)
  sitting (→g)
  俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。因此也叫Levenshtein Distance。
例如

  • 如果str1="ivan",str2="ivan",那么经过计算后等于 0。没有经过转换。相似度=1-0/Math.Max(str1.length,str2.length)=1
  • 如果str1="ivan1",str2="ivan2",那么经过计算后等于1。str1的"1"转换"2",转换了一个字符,所以距离是1,相似度=1-1/Math.Max(str1.length,str2.length)=0.8

应用  DNA分析
  拼字检查
  语音辨识
  抄袭侦测
感谢大石头在评论中给出一个很好的关于此方法应用的连接 补充在此:
小规模的字符串近似搜索,需求类似于搜索引擎中输入关键字,出现类似的结果列表,文章连接:【算法】字符串近似搜索
算法过程

  • str1或str2的长度为0返回另一个字符串的长度。 if(str1.length==0) return str2.length; if(str2.length==0) return str1.length;
  • 初始化(n+1)*(m+1)的矩阵d,并让第一行和列的值从0开始增长。
  • 扫描两字符串(n*m级的),如果:str1 == str2[j],用temp记录它,为0。否则temp记为1。然后在矩阵d[i,j]赋于d[i-1,j]+1 、d[i,j-1]+1、d[i-1,j-1]+temp三者的最小值。
  • 扫描完后,返回矩阵的最后一个值d[n][m]即是它们的距离。

计算相似度公式:1-它们的距离/两个字符串长度的最大值。

为了直观表现,我将两个字符串分别写到行和列中,实际计算中不需要。我们用字符串“ivan1”和“ivan2”举例来看看矩阵中值的状况:
1、第一行和第一列的值从0开始增长

    i v a n 1
  0 1 2 3 4 5
i 1          
v 2          
a 3          
n 4          
2 5          

2、i列值的产生 Matrix[i - 1, j] + 1 ; Matrix[i, j - 1] + 1   ;    Matrix[i - 1, j - 1] + t

    i v a n 1
  0+t=0 1+1=2 2 3 4 5
i 1+1=2 取三者最小值=0        
v 2 依次类推:1        
a 3 2        
n 4 3        
2 5 4        

3、V列值的产生

    i v a n 1
  0 1 2      
i 1 0 1      
v 2 1 0      
a 3 2 1      
n 4 3 2      
2 5 4 3      

依次类推直到矩阵全部生成

    i v a n 1
  0 1 2 3 4 5
i 1 0 1 2 3 4
v 2 1 0 1 2 3
a 3 2 1 0 1 2
n 4 3 2 1 0 1
2 5 4 3 2 1 1

最后得到它们的距离=1
相似度:1-1/Math.Max(“ivan1”.length,“ivan2”.length) =0.8

转载自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981

字符串相似度算法(编辑距离算法 Levenshtein Distance)的更多相关文章

  1. [Irving]字符串相似度-字符编辑距离算法(c#实现)

    编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字 ...

  2. 扒一扒编辑距离(Levenshtein Distance)算法

    最近由于工作需要,接触了编辑距离(Levenshtein Distance)算法.赶脚很有意思.最初百度了一些文章,但讲的都不是很好,读起来感觉似懂非懂.最后还是用google找到了一些资料才慢慢理解 ...

  3. Java 比较两个字符串的相似度算法(Levenshtein Distance)

    转载自: https://blog.csdn.net/JavaReact/article/details/82144732 算法简介: Levenshtein Distance,又称编辑距离,指的是两 ...

  4. 编辑距离算法(Levenshtein)

    编辑距离定义: 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数. 许可的编辑操作包括:将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如 ...

  5. Go 实现字符串相似度计算函数 Levenshtein 和 SimilarText

    [转]http://www.syyong.com/Go/Go-implements-the-string-similarity-calculation-function-Levenshtein-and ...

  6. 字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)

    在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...

  7. 用C#实现字符串相似度算法(编辑距离算法 Levenshtein Distance)

    在搞验证码识别的时候需要比较字符代码的相似度用到"编辑距离算法",关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Dist ...

  8. [转]字符串相似度算法(编辑距离算法 Levenshtein Distance)

    转自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981 http://www.cnblogs.com/ivanyb/archi ...

  9. 字符串相似度算法——Levenshtein Distance算法

    Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一 ...

随机推荐

  1. UrlOfFIle

    如上,报错位置为folder.Files[],表示这里需要的是文件的Url地址,即folder.Files[文件的Url地址].

  2. android apk 防止反编译技术第一篇-加壳技术

    做android framework方面的工作将近三年的时间了,现在公司让做一下android apk安全方面的研究,于是最近就在网上找大量的资料来学习.现在将最近学习成果做一下整理总结.学习的这些成 ...

  3. CS0016: 未能写入输出文件“c:\windows\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\data\34aae060\b7daa87d\App_Web_addadvice.aspx.cdcab7d2.ekhlcbjd.dll”--“目录名无效。 ”

    产生原因: 应用程序运行时产生的临时文件需要存放到c:"windows"temp 文件夹下 而运行基于microsoft .net framework 框架下的应用程序 需要对te ...

  4. Ext.Net学习笔记21:Ext.Net FormPanel 字段验证(validation)

    Ext.Net学习笔记21:Ext.Net FormPanel 字段验证(validation) 作为表单,字段验证当然是不能少的,今天我们来一起看看Ext.Net FormPanel的字段验证功能. ...

  5. __nonnull 和 __nullable (Swift 和 Objective-C混编)

    苹果在 Xcode 6.3 以后,为了解决 Swift 与 OC 混编时的问题,引入了一个 Objective-C 的新特性:nullability annotations. 这一新特性的核心是两个新 ...

  6. 【html】【10】div布局[div水平垂直居中]

    必看参考: http://www.jb51.net/css/28259.html 让div居中对齐缩写形式为: .style{margin:0 auto;} 数字0 表示上下边距是0.可以按照需要设置 ...

  7. 牛客网算法题之All-in-All

    题目: 有两个字符串s 和t,如果即从s 中删除一些字符,将剩余的字符连接起来,即可获得t.则称t是s 的子序列.请你开发一个程序,判断t是否是s的子序列. 输入描述: 输入包含多组数据,每组数据包含 ...

  8. makefile--#的不正确使用

    /usr/vacpp/bin/makeC++SharedLib -o /cicm/src/dao/testcase/rel/FUNCTEST.ibmcpp -brtl -bnortllib -p100 ...

  9. 几个css的小知识点(一)

    1.对于不能确定宽度的div让它水平居中. <div class='father'> <div class='son'>居中</div> </div> ...

  10. JAVA学习资料整理

    今天偶然间发现之前一个群里发过的一篇关于JAVA学习资料的东西.本着服务大众的精神,搬来了博客园: <JAVA编程思想>第四版(英文原版) 下载地址:http://115.com/file ...