字符串相似度算法(编辑距离算法 Levenshtein Distance)
在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录。
据百度百科介绍:
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如将kitten一字转成sitting:
sitten (k→s)
sittin (e→i)
sitting (→g)
俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。因此也叫Levenshtein Distance。
例如
- 如果str1="ivan",str2="ivan",那么经过计算后等于 0。没有经过转换。相似度=1-0/Math.Max(str1.length,str2.length)=1
- 如果str1="ivan1",str2="ivan2",那么经过计算后等于1。str1的"1"转换"2",转换了一个字符,所以距离是1,相似度=1-1/Math.Max(str1.length,str2.length)=0.8
应用 DNA分析
拼字检查
语音辨识
抄袭侦测
感谢大石头在评论中给出一个很好的关于此方法应用的连接 补充在此:
小规模的字符串近似搜索,需求类似于搜索引擎中输入关键字,出现类似的结果列表,文章连接:【算法】字符串近似搜索
算法过程
- str1或str2的长度为0返回另一个字符串的长度。 if(str1.length==0) return str2.length; if(str2.length==0) return str1.length;
- 初始化(n+1)*(m+1)的矩阵d,并让第一行和列的值从0开始增长。
- 扫描两字符串(n*m级的),如果:str1 == str2[j],用temp记录它,为0。否则temp记为1。然后在矩阵d[i,j]赋于d[i-1,j]+1 、d[i,j-1]+1、d[i-1,j-1]+temp三者的最小值。
- 扫描完后,返回矩阵的最后一个值d[n][m]即是它们的距离。
计算相似度公式:1-它们的距离/两个字符串长度的最大值。
为了直观表现,我将两个字符串分别写到行和列中,实际计算中不需要。我们用字符串“ivan1”和“ivan2”举例来看看矩阵中值的状况:
1、第一行和第一列的值从0开始增长
| i | v | a | n | 1 | ||
| 0 | 1 | 2 | 3 | 4 | 5 | |
| i | 1 | |||||
| v | 2 | |||||
| a | 3 | |||||
| n | 4 | |||||
| 2 | 5 |
2、i列值的产生 Matrix[i - 1, j] + 1 ; Matrix[i, j - 1] + 1 ; Matrix[i - 1, j - 1] + t
| i | v | a | n | 1 | ||
| 0+t=0 | 1+1=2 | 2 | 3 | 4 | 5 | |
| i | 1+1=2 | 取三者最小值=0 | ||||
| v | 2 | 依次类推:1 | ||||
| a | 3 | 2 | ||||
| n | 4 | 3 | ||||
| 2 | 5 | 4 |
3、V列值的产生
| i | v | a | n | 1 | ||
| 0 | 1 | 2 | ||||
| i | 1 | 0 | 1 | |||
| v | 2 | 1 | 0 | |||
| a | 3 | 2 | 1 | |||
| n | 4 | 3 | 2 | |||
| 2 | 5 | 4 | 3 |
依次类推直到矩阵全部生成
| i | v | a | n | 1 | ||
| 0 | 1 | 2 | 3 | 4 | 5 | |
| i | 1 | 0 | 1 | 2 | 3 | 4 |
| v | 2 | 1 | 0 | 1 | 2 | 3 |
| a | 3 | 2 | 1 | 0 | 1 | 2 |
| n | 4 | 3 | 2 | 1 | 0 | 1 |
| 2 | 5 | 4 | 3 | 2 | 1 | 1 |
最后得到它们的距离=1
相似度:1-1/Math.Max(“ivan1”.length,“ivan2”.length) =0.8
转载自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981
字符串相似度算法(编辑距离算法 Levenshtein Distance)的更多相关文章
- [Irving]字符串相似度-字符编辑距离算法(c#实现)
编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字 ...
- 扒一扒编辑距离(Levenshtein Distance)算法
最近由于工作需要,接触了编辑距离(Levenshtein Distance)算法.赶脚很有意思.最初百度了一些文章,但讲的都不是很好,读起来感觉似懂非懂.最后还是用google找到了一些资料才慢慢理解 ...
- Java 比较两个字符串的相似度算法(Levenshtein Distance)
转载自: https://blog.csdn.net/JavaReact/article/details/82144732 算法简介: Levenshtein Distance,又称编辑距离,指的是两 ...
- 编辑距离算法(Levenshtein)
编辑距离定义: 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数. 许可的编辑操作包括:将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如 ...
- Go 实现字符串相似度计算函数 Levenshtein 和 SimilarText
[转]http://www.syyong.com/Go/Go-implements-the-string-similarity-calculation-function-Levenshtein-and ...
- 字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)
在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...
- 用C#实现字符串相似度算法(编辑距离算法 Levenshtein Distance)
在搞验证码识别的时候需要比较字符代码的相似度用到"编辑距离算法",关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Dist ...
- [转]字符串相似度算法(编辑距离算法 Levenshtein Distance)
转自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981 http://www.cnblogs.com/ivanyb/archi ...
- 字符串相似度算法——Levenshtein Distance算法
Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一 ...
随机推荐
- C#学习笔记1:正则表达式和数据库连接
1.using System.Text.RegularExpressions; 只有导入该命名空间,才能引入Regex对象,IsMatch是Regex中的一个方法,作用是来判断(输入)内容是否满足正则 ...
- ArcEngine 直连连接SDE
关键代码IPropertySet pPropertySet = new PropertySetClass(); pPropertySet.SetProperty("S ...
- cocos2d-x实战 C++卷 学习笔记--第7章 动作、特效(一)
前言: 介绍cocos2d-x中的动作.特效. 动作: 动作(action)包括基本动作和基本动作的组合,这些基本动作有缩放.移动.旋转等,而且这些动作变化的速度也可以设定. 动作类是 Action. ...
- C#多线程同步
在编写多线程程序时无可避免会碰到线程的同步问题.什么是线程的同步呢? 举个例子:假如在一个公司里面有一个变量记录某人T的工资count=100,有两个主管A和B(即工作线程)在早一些时候拿了这个变量的 ...
- java之多态的使用
首先,什么是多态?我们应该从什么角度来理解多态?其实,我们不妨把多态理解成一种事物的多种存在形态,比如,猫和狗都可以变成动物,而动物又可以变成猫和狗. 为了充分理解多态,我们可以从以下这几个方面来理解 ...
- 暑假集训(2)第五弹 ----- Who's in the Middle(poj2388)
G - Who's in the Middle Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:32 ...
- What are the differences between small, minor, and major updates?
Following contents are excerpted from the this website and only used for knowledge sharing: Install ...
- C++字符串函数与C字符串函数比较
赋值拷贝: #include <iostream> #include <string> using namespace std; void main(){ string a=& ...
- 防火墙,svn服务器端安装(yum),使用
yum install subversion 查看安装位置 rpm -ql subversion 结果如下: svn在bin目录下生成了几个二进制文件 可以查看svn的使用方法 svn --help ...
- 51nod动态规划-----矩阵取数
一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下向右走,求能够获得的最大价值. 例如:3 * 3的方格. 1 3 3 2 1 3 2 2 1 能够获得的最 ...