package com.test.test2;

public class FFT {
    public static final int FFT_N_LOG = 10; // FFT_N_LOG <= 13
    public static final int FFT_N = 1 << FFT_N_LOG;
    private static final float MINY = (float) ((FFT_N << 2) * Math.sqrt(2)); // (*)
    private final float[] real, imag, sintable, costable;
    private final int[] bitReverse;

public FFT() {
        real = new float[FFT_N];
        imag = new float[FFT_N];
        sintable = new float[FFT_N >> 1];
        costable = new float[FFT_N >> 1];
        bitReverse = new int[FFT_N];

int i, j, k, reve;
        for (i = 0; i < FFT_N; i++) {
            k = i;
            for (j = 0, reve = 0; j != FFT_N_LOG; j++) {
                reve <<= 1;
                reve |= (k & 1);
                k >>>= 1;
            }
            bitReverse[i] = reve;
        }

double theta, dt = 2 * 3.14159265358979323846 / FFT_N;
        for (i = 0; i < (FFT_N >> 1); i++) {
            theta = i * dt;
            costable[i] = (float) Math.cos(theta);
            sintable[i] = (float) Math.sin(theta);
        }
    }

/**
     * 用于频谱显示的快速傅里叶变换
     *
     * @param realIO
     *            输入FFT_N个实数,也用它暂存fft后的FFT_N/2个输出值(复数模的平方)。
     */
    public void calculate(float[] realIO) {
        int i, j, k, ir, exchanges = 1, idx = FFT_N_LOG - 1;
        float cosv, sinv, tmpr, tmpi;
        for (i = 0; i != FFT_N; i++) {
            real[i] = realIO[bitReverse[i]];
            imag[i] = 0;
        }

for (i = FFT_N_LOG; i != 0; i--) {
            for (j = 0; j != exchanges; j++) {
                cosv = costable[j << idx];
                sinv = sintable[j << idx];
                for (k = j; k < FFT_N; k += exchanges << 1) {
                    ir = k + exchanges;
                    tmpr = cosv * real[ir] - sinv * imag[ir];
                    tmpi = cosv * imag[ir] + sinv * real[ir];
                    real[ir] = real[k] - tmpr;
                    imag[ir] = imag[k] - tmpi;
                    real[k] += tmpr;
                    imag[k] += tmpi;
                }
            }
            exchanges <<= 1;
            idx--;
        }

j = FFT_N >> 1;
        /*
         * 输出模的平方(的FFT_N倍):
         * for(i = 1; i <= j; i++)
         * realIO[i-1] = real[i] * real[i] + imag[i] * imag[i];
         *
         * 如果FFT只用于频谱显示,可以"淘汰"幅值较小的而减少浮点乘法运算. MINY的值
         * 和Spectrum.Y0,Spectrum.logY0对应.
         */
        sinv = MINY;
        cosv = -MINY;
        for (i = j; i != 0; i--) {
            tmpr = real[i];
            tmpi = imag[i];
            if (tmpr > cosv && tmpr < sinv && tmpi > cosv && tmpi < sinv)
                realIO[i - 1] = 0;
            else
                realIO[i - 1] = tmpr * tmpr + tmpi * tmpi;
        }
    }

public static void main(String[] args) {
        FFT fft2 = new FFT();
        float[] realIo = { 1, 2 };
        fft2.calculate(realIo);
    }
}

FFT(快速傅立叶算法 for java)的更多相关文章

  1. BZOJ 2179: FFT快速傅立叶

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2923  Solved: 1498[Submit][Status][Di ...

  2. 【bzoj2179】FFT快速傅立叶 FFT模板

    2016-06-01  09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...

  3. 【BZOJ 2179】 2179: FFT快速傅立叶 (FFT)

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3308  Solved: 1720 Description 给出两个n位 ...

  4. bzoj 2179: FFT快速傅立叶 -- FFT

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MB Description 给出两个n位10进制整数x和y,你需要计算x*y. Input ...

  5. 【BZOJ2179】FFT快速傅立叶

    [BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...

  6. [bzoj2179]FFT快速傅立叶_FFT

    FFT快速傅立叶 bzoj-2179 题目大意:给出两个n位10进制整数x和y,你需要计算x*y. 注释:$1\le n\le 6\times 10^4$. 想法: $FFT$入门题. $FFT$实现 ...

  7. 【CodeVS 3123】高精度练习之超大整数乘法 &【BZOJ 2197】FFT快速傅立叶

    第一次写法法塔,,,感到威力无穷啊 看了一上午算导就当我看懂了?PS:要是机房里能有个清净的看书环境就好了 FFT主要是用了巧妙的复数单位根,复数单位根在复平面上的对称性使得快速傅立叶变换的时间复杂度 ...

  8. BZOJ 2179 FFT快速傅立叶 题解

    bzoj 2179 Description 给出两个n位10进制整数x和y,你需要计算x*y. [题目分析] 高精裸题.练手. [代码] 1.手动高精 #include<cstdio> # ...

  9. FFT快速傅里叶变换算法

    1.FFT算法概要: FFT(Fast Fourier Transformation)是离散傅氏变换(DFT)的快速算法.即为快速傅氏变换.它是根据离散傅氏变换的奇.偶.虚.实等特性,对离散傅立叶变换 ...

随机推荐

  1. python 程序列表

    用 python  通过读取注册表来获取机器安装的程序列表,包括,软件名称,版本号,安装日期等 # -*- coding: UTF8 -*-import _winregimport osimport ...

  2. sizeof()和strlen()在求字符串长度时的差别

    sizeof()函数输出字符串长度时会把结束符计算在内: strlen()函数输出字符串长度时不会把结束符计算在内. 如图:

  3. 优化函数式编程:向 PHP 移植 Clojure 函数

    许多通用程序设计语言试图兼容大多数编程范式,PHP 就属于其中之一.不论你想要成熟的面向对象的程序设计,还是程序式或函数式编程,PHP 都可以做到.但我们不禁要问,PHP 擅长函数式编程吗?本文系国内 ...

  4. 1091-Black Vienna

    描述 This problem is based on the game of Black Vienna. In this version there are three players and 18 ...

  5. 到底DAO是什么?为什么要有它的存在?

    Data Access Object   数据访问接口,就是访问数据库方法的 interface 1. DAO用来封装Data Source的..就比如,Connection conn = DAOFa ...

  6. JAVA与C++的区别和联系

    这篇总结的貌似不错: http://wenku.baidu.com/link?url=VixkWGl0BzUkmceaDJnQeUhzKEIex6poGaKKvMTP87P8a7HTmS5uIi87I ...

  7. 在Hadoop伪分布式模式下安装Hbase

    安装环境:Hadoop 1.2.0, Java 1.7.0_21 1.下载/解压 在hbase官网上选择自己要下的hbase版本,我选择的是hbase-0.94.8. 下载后解压到/usr/local ...

  8. javascript模板引擎Mustache

    Mustache(英文本意:触须,胡须)是基于JavaScript实现的模版引擎,类似于JQuery Template,但是这个模版更加的轻量级,语法更加的简单易用,很容易上手. 下载:https:/ ...

  9. Linux下Apache与Tomcat的完全分布式集群配置(负载均衡)

    最近公司要给客户提供一套集群方案,项目组采用了Apache和Tomcat的集群配置,用于实现负载均衡的实现. 由于以前没有接触过Apache,因此有些手生,另外在网上搜寻了很多有关这方面的集群文章,但 ...

  10. JS中的substring和substr函数的区别

    1. 在JS中, 函数声明: stringObject.substring(start,stop) start是在原字符串检索的开始位置,stop是检索的终止位置,返回结果中不包括stop所指字符. ...