转自:https://www.byvoid.com/blog/scc-tarjan/

四月142009

有向图强连通分量的Tarjan算法

[有向图强连通分量]

在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M)。更好的方法是Kosaraju算法或Tarjan算法,两者的时间复杂度都是O(N+M)。本文介绍的是Tarjan算法。

[Tarjan算法]

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。由定义可以得出,

Low(u)=Min
{
DFN(u),
Low(v),(u,v)为树枝边,u为v的父节点
DFN(v),(u,v)为指向栈中节点的后向边(非横叉边)
}

当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

算法伪代码如下

tarjan(u)
{
DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值
Stack.push(u) // 将节点u压入栈中
for each (u, v) in E // 枚举每一条边
if (v is not visted) // 如果节点v未被访问过
tarjan(v) // 继续向下找
Low[u] = min(Low[u], Low[v])
else if (v in S) // 如果节点v还在栈内
Low[u] = min(Low[u], DFN[v])
if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根
repeat
v = S.pop // 将v退栈,为该强连通分量中一个顶点
print v
until (u== v)
}

接下来是对算法流程的演示。

从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是 O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。 在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与求无向图的双连通分量(割点、桥)的Tarjan算法也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。

求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法,以及求最近公共祖先的离线Tarjan算法,在此对Tarjan表示崇高的敬意。

附:tarjan算法的C++程序

void tarjan(int i)
{
int j;
DFN[i]=LOW[i]=++Dindex;
instack[i]=true;
Stap[++Stop]=i;
for (edge *e=V[i];e;e=e->next)
{
j=e->t;
if (!DFN[j])
{
tarjan(j);
if (LOW[j]<LOW[i])
LOW[i]=LOW[j];
}
else if (instack[j] && DFN[j]<LOW[i])
LOW[i]=DFN[j];
}
if (DFN[i]==LOW[i])
{
Bcnt++;
do
{
j=Stap[Stop--];
instack[j]=false;
Belong[j]=Bcnt;
}
while (j!=i);
}
}
void solve()
{
int i;
Stop=Bcnt=Dindex=0;
memset(DFN,0,sizeof(DFN));
for (i=1;i<=N;i++)
if (!DFN[i])
tarjan(i);
}

[参考资料]

BYVoid 原创作品,转载请注明。

tarjan 算法讲解(转)的更多相关文章

  1. tarjan算法讲解。

    tarjan算法讲解.   全网最详细tarjan算法讲解,我不敢说别的.反正其他tarjan算法讲解,我看了半天才看懂.我写的这个,读完一遍,发现原来tarjan这么简单! tarjan算法,一个关 ...

  2. (转)全网最!详!细!tarjan算法讲解

    byhttp://www.cnblogs.com/uncle-lu/p/5876729.html 全网最详细tarjan算法讲解,我不敢说别的.反正其他tarjan算法讲解,我看了半天才看懂.我写的这 ...

  3. [转]全网最!详!细!tarjan算法讲解

    转发地址:https://blog.csdn.net/qq_34374664/article/details/77488976 原版的地址好像挂了..... 看到别人总结的很好,自己就偷个懒吧..以下 ...

  4. 【转载】全网最!详!细!tarjan算法讲解。

    转自http://www.cnblogs.com/uncle-lu/p/5876729.html [转载]全网最!详!细!tarjan算法讲解.(已改正一些奥妙重重的小错误^_^) 全网最详细tarj ...

  5. 全网最!详!细!tarjan算法讲解。——转载自没有后路的路

    全网最!详!细!tarjan算法讲解.   全网最详细tarjan算法讲解,我不敢说别的.反正其他tarjan算法讲解,我看了半天才看懂.我写的这个,读完一遍,发现原来tarjan这么简单! tarj ...

  6. 有向图强连通分支的Tarjan算法讲解 + HDU 1269 连通图 Tarjan 结题报告

    题目很简单就拿着这道题简单说说 有向图强连通分支的Tarjan算法 有向图强连通分支的Tarjan算法伪代码如下:void Tarjan(u) {dfn[u]=low[u]=++index//进行DF ...

  7. tarjan算法讲解

    tarjan算法,一个关于 图的联通性的神奇算法.基于DFS算法,深度优先搜索一张有向图.!注意!是有向图.根据树,堆栈,打标记等种种神奇方法来完成剖析一个图的工作.而图的联通性,就是任督二脉通不通. ...

  8. Tarjan算法分解强连通分量(附详细参考文章)

    Tarjan算法分解强连通分量 算法思路: 算法通过dfs遍历整个连通分量,并在遍历过程中给每个点打上两个记号:一个是时间戳,即首次访问到节点i的时刻,另一个是节点u的某一个祖先被访问的最早时刻. 时 ...

  9. 【原创】tarjan算法初步(强连通子图缩点)

    [原创]tarjan算法初步(强连通子图缩点) tarjan算法的思路不是一般的绕!!(不过既然是求强连通子图这样的回路也就可以稍微原谅了..) 但是研究tarjan之前总得知道强连通分量是什么吧.. ...

随机推荐

  1. invalid code signing entitlement的通用暴力解决办法

    1.添加的一台苹果设备为开发机子后,打版本,说profile 没找到,报错 2.上传二进制文件到itunes connect ,报错 3.有时候还什么 appID 无效,报错 烦死他了 我的解决办法, ...

  2. iOS开发——屏幕尺寸适配

    对于屏幕尺寸适配,目前先指竖屏的方式适合方式1和2. 1.控件尺寸写死的方式,偶尔会用到屏幕的宽度和高度. UILabel *holdLabel = [[UILabel alloc]initWithF ...

  3. 暑假集训(2)第六弹 ----- Frosh Week(UVA11858)

    H - Frosh Week Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     ...

  4. TCP传输小数据包效率问题(译自MSDN)

    TCP传输小数据包效率问题(译自MSDN) http://www.ftpff.com/blog/?q=node/16 摘要:当使用TCP传输小型数据包时,程序的设计是相当重要的.如果在设计方案中不对T ...

  5. Pigcms中WeixinAction的简略版流程

    if $this->ali = 0; 1.new wechat() //该类存于PigCms/lib/ORG/Wechat.class.php 2.list($content,$type) = ...

  6. Apache(二)

    Apache的基本配置 1.监听套接字[ip : port] 2.实现持久连接(keep alive) 3.MPM模块 命令行中执行 core.c        :  核心模块 prefork.c   ...

  7. 为什么要有binary-to-text encoding?

    在wikipedia上看MIME的介绍的时候,有一节是关于Content-Transfer-Encoding的,里面提到了binary-to-text encoding,我就想,既然计算机中的信息使用 ...

  8. PHP常见算法-面试篇(1)

    1.冒泡排序 思路分析:在要排序的一组数中,对当前还未排好的序列,从前往后对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒.即,每当两相邻的数比较后发现它们的排序与排序要求相反时,就将 ...

  9. (转)HTTP协议(3)

    一.概念 协议是指计算机通信网络中两台计算机之间进行通信所必须共同遵守的规定或规则,超文本传输协议(HTTP)是一种通信协议,它允许将超文本标记语言(HTML)文档从Web服务器传送到客户端的浏览器. ...

  10. 8.MVC框架开发(URL路由配置和URL路由传参空值处理)

    1.ASP.NET和MVC的路由请求处理 1)ASP.NET的处理 请求---------响应请求(HttpModule)--------处理请求(HttpHandler)--------把请求的资源 ...