描述

小Hi和小Ho在回国之后,重新过起了朝7晚5的学生生活,当然了,他们还是在一直学习着各种算法~

这天小Hi和小Ho所在的学校举办社团文化节,各大社团都在宣传栏上贴起了海报,但是贴来贴去,有些海报就会被其他社团的海报所遮挡住。看到这个场景,小Hi便产生了这样的一个疑问——最后到底能有几张海报还能被看见呢?

于是小Ho肩负起了解决这个问题的责任:因为宣传栏和海报的高度都是一样的,所以宣传栏可以被视作长度为L的一段区间,且有N张海报按照顺序依次贴在了宣传栏上,其中第i张海报贴住的范围可以用一段区间[a_i, b_i]表示,其中a_i, b_i均为属于[0, L]的整数,而一张海报能被看到当且仅当存在长度大于0的一部分没有被后来贴的海报所遮挡住。那么问题就来了:究竟有几张海报能被看到呢?

提示一:正确的认识信息量

提示二:小Hi大讲堂之线段树的节点意义

输入

每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第1行为两个整数N和L,分别表示总共贴上的海报数量和宣传栏的宽度。

每组测试数据的第2-N+1行,按照贴上去的先后顺序,每行描述一张海报,其中第i+1行为两个整数a_i, b_i,表示第i张海报所贴的区间为[a_i, b_i]。

对于100%的数据,满足N<=10^5,L<=10^9,0<=a_i<b_i<=L。

输出

对于每组测试数据,输出一个整数Ans,表示总共有多少张海报能被看到。

样例输入

5 10
4 10
0 2
1 6
5 9
3 4

样例输出

5

题解:离散线段树好了,标记是要down的!!!

要注意的是[1,2],[2,3],[3,4]是算3张海报,因为海报实际上是一个连续的区间,所以下标为i对应的是[i,i+1]的区间。所以对于区间[a,b],线段树更新的节点范围是[a,b-1]。还是相当关键的!

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#define PAU putchar(' ')
#define ENT putchar('\n')
#define CH for(int d=0;d<2;d++)if(ch[d])
#define lson x->ch[0],L,M
#define rson x->ch[1],M+1,R
using namespace std;
const int maxn=+,maxnode=+,inf=-1u>>;
struct node{
node*ch[];int siz;int t;
void addt(int a){t=a;return;}
void down(){if(t){CH{ch[d]->addt(t);}t=;}return;}
}seg[maxnode],*nodecnt=seg,*root;
struct data{int L,R;}d[maxn];
int n,num[maxn],A[maxn],ql,qr,cv,pos;bool ans[maxn];
void build(node*&x=root,int L=,int R=n<<){
x=nodecnt++;int M=L+R>>;if(L==R)x->t=;
else build(lson),build(rson);x->siz=R-L+;return;
}
void update(node*&x=root,int L=,int R=n<<){
if(ql<=L&&R<=qr)x->addt(cv);
else{int M=L+R>>;x->down();
if(ql<=M)update(lson);
if(qr>M)update(rson);
}return;
}
void query(node*x=root,int L=,int R=n<<){
if(!x)return;
if(x->t)ans[x->t]=true;
else{int M=L+R>>;
query(lson);query(rson);
}return;
}
inline int read(){
int x=,sig=;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')sig=;
for(;isdigit(ch);ch=getchar())x=*x+ch-'';
return sig?x:-x;
}
inline void write(int x){
if(x==){putchar('');return;}if(x<)putchar('-'),x=-x;
int len=,buf[];while(x)buf[len++]=x%,x/=;
for(int i=len-;i>=;i--)putchar(buf[i]+'');return;
}
void init(){
n=read();read();build();int x,y;
for(int i=;i<=n;i++)x=num[i<<]=read(),y=num[(i<<)|]=read(),d[i]=(data){x,y};
sort(num+,num+n*+);int L=unique(num+,num+n*+)-num;
for(int i=;i<=n;i++){
ql=upper_bound(num+,num+L,d[i].L)-num-;
qr=upper_bound(num+,num+L,d[i].R)-num-;//attention
cv=i;update();
}query();int res=;
for(int i=;i<=(n<<);i++)if(ans[i])res++;write(res);
return;
}
void work(){
return;
}
void print(){
return;
}
int main(){init();work();print();return ;}

hiho #1079 : 离散化的更多相关文章

  1. poj 2528 Mayor's posters 线段树+离散化 || hihocode #1079 离散化

    Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...

  2. hihoCoder - 1079 - 离散化 (线段树 + 离散化)

    #1079 : 离散化 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描写叙述 小Hi和小Ho在回国之后,又一次过起了朝7晚5的学生生活.当然了.他们还是在一直学习着各种算法 ...

  3. Hihocoder 1079 离散化

    离散化这里有很多种方式 利用结构体记录最初的索引在按位置排序再记录排名即为离散的位置再按索引排回来 或者用数组记录排序后直接对原位置二分直接去找离散应在的位置 或者对数组排序后直接map 3 20 1 ...

  4. hihoCoder #1079 : 离散化 (线段树,数据离散化)

    题意:有一块宣传栏,高一定,给出长度,再给出多张海报的张贴位置,问还能见到几张海报(哪怕有一点被看到)?假设海报的高于宣传栏同高. 思路:问题转成“给出x轴上长为L的一条线段,再用n条线段进行覆盖上去 ...

  5. hiho一下21周 线段树的区间修改 离散化

    离散化 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho在回国之后,重新过起了朝7晚5的学生生活,当然了,他们还是在一直学习着各种算法~ 这天小Hi和小Ho ...

  6. hihoCoder:#1079(线段树+离散化)

    题目大意:给n个区间,有的区间可能覆盖掉其他区间,问没有完全被其他区间覆盖的区间有几个?区间依次给出,如果有两个区间完全一样,则视为后面的覆盖前面的. 题目分析:区间可能很长,所以要将其离散化.但离散 ...

  7. hihoCoder#1079(线段树+坐标离散化)

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho在回国之后,重新过起了朝7晚5的学生生活,当然了,他们还是在一直学习着各种算法~ 这天小Hi和小Ho所在的学 ...

  8. hiho 分冶专题

    hiho的每周一题都不会很难,基本上就是一些很裸和经典的问题,这一次写了几道分冶专题的题,做个总结. 分冶最简单的就是二分,二分说简单,很简单,不过7,8行代码,不过也常常写挂,写成无限循环. 直接看 ...

  9. hihocoder-1079题解(线段树+离散化)

    一.题目链接 http://hihocoder.com/problemset/problem/1079 二.题意 给定一个长度为L的区间,给你n个子区间,没一个区间涂成一种颜色,问最后这个区间内有几种 ...

随机推荐

  1. iOS 高仿:花田小憩3.0.1

    前言 断断续续的已经学习Swift一年多了, 从1.2到现在的2.2, 一直在语法之间徘徊, 学一段时间, 工作一忙, 再捡起来隔段时间又忘了.思来想去, 趁着这两个月加班不是特别多, 就决定用swi ...

  2. 关于mvc 分页的 这两个结合着用

    http://www.cnblogs.com/JackFeng/archive/2010/01/25/JackFeng.html http://www.webdiyer.com/mvcpager/de ...

  3. HttpClient使用cookie

    import java.io.IOException; import java.util.ArrayList; import java.util.List; import java.util.Map; ...

  4. WPF MediaElement.Position属性

    Position 属性定义:获取或设置媒体播放时间的当前进度位置. // // 摘要: // 通过媒体播放时获取或设置进度的当前位置. // // 返回结果: // 媒体时自以来的.默认值为 00:0 ...

  5. vs2013下的WCFRest 模板开发WCF

    在vs2013下使用wcfRestservice40 是安装不成功的,尝试多遍,都是这样.查看以前vs2012做的wcfrest,经过调教,终于在vs2013下也可以了! 1.新建wcf服务应用程序 ...

  6. Eclipse vs IDEA快捷键对比大全(win系统)

    花了几天时间熟悉IDEA的各种操作,将各种快捷键都试了一下,感觉很是不错! 以下为我整理了一下开发过程中经常用的一些Eclipse快捷键与IDEA的对比,方便像我一样使用Eclipse多年但想尝试些改 ...

  7. 分享一个nodejs写的小论坛

    引言:作为一个前端小菜鸟,最近迷上了node,于是乎空闲时间,为了练练手写了一个node的小社区,关于微信小程序的,欢迎大家批评指导. 项目架构部分 一.前端架构 作为一个写样式也得无聊的前端狮,我偷 ...

  8. 平衡搜索树(一) AVL树

    AVL树 AVL树又称为高度平衡的二叉搜索树,是1962年有俄罗斯的数学家G.M.Adel'son-Vel'skii和E.M.Landis提出来的.它能保持二叉树的高度 平衡,尽量降低二叉树的高度,减 ...

  9. sass编译css(转自阮一峰)

    一.什么是SASS SASS是一种CSS的开发工具,提供了许多便利的写法,大大节省了设计者的时间,使得CSS的开发,变得简单和可维护. 本文总结了SASS的主要用法.我的目标是,有了这篇文章,日常的一 ...

  10. java.math.BigDecimal类

    BigDecimal类用于高精度计算.一般的float型和Double型数据只可以用来做科学计算或者是工程计算,由于在商业计算中,要求的数字精度比较高,所以要用到java.math.BigDecima ...