【UVA 11383】 Golden Tiger Claw (KM算法副产物)
Omi, Raymondo, Clay and Kimiko are on new adventure- in search of new Shen Gong Wu. But Evil
Boy Genius Jack Spicer is also there. Omi and Jack found the Shen Gong Wu at the same time so they
rushed for it but alas they touched it at the same time. Then what? It is time for “Xiaolin Showdown”.
Jack challenged Omi to play a game. The game is simple! There will be an N ∗ N board where
each cell in the board contains some number. They have to assign numbers to each row and column
separately so that w(i, j) ≤ row(i) + col(j) where w(i, j) is the number assigned to the cell located
at i-th row and j-th column, row(i) is the number assigned to i-th row and col(j) is the number
∑
assigned to j-th column. That is simple isnt it? Well . . . the main part is that you have to minimize
1≤i≤n
(row(i) + col(j)).
Jack has taken his favorite “Monkey Stuff” and Omi has taken “Golden Tiger Claw”. With the help
of this “Golden Tiger Claw”, he can go anywhere in the world. He has come to you and seeking your
help. Jack is using his computer to solve this problem. So do it quick! Find the most optimal solution
for Omi so that you can also be part of history in saving the world from the darkness of evil.
Input
Input contains 15 test cases. Each case starts with N. Then there are N lines containing N numbers
each. All the numbers in input is positive integer within the limit 100 except N which can be at most
500.
Output
For each case in the first line there will be N numbers, the row assignments. In the next line there
will N column assignment. And at the last line the minimum sum should be given. If there are several
possible solutions give any.
Note: Be careful about the output format. You may get Wrong Answer if you don’t output properly.
Sample Input
2
1 1
1 1
Sample Output
1 1
0 0
2
【题意】
给出一个n*n的矩阵(n<=500)给每一行x[i],每一列标号y[i],使得对任意a[i][j],x[i]+y[j]>=a[i][j]求行标与列标和最小
【分析】
事实上和最佳匹配没什么关系,但是我们进行KM算法的时候,有w(i,j)<=row(i)+col(j),并且算出来的顶标之和是最小的,so。。。
代码如下:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Maxn 510
#define Maxm 250010
#define INF 0xfffffff struct node
{
int x,y,c,next;
}t[Maxm];int len;
int first[Maxn]; int mymin(int x,int y) {return x<y?x:y;}
int mymax(int x,int y) {return x>y?x:y;} void ins(int x,int y,int c)
{
t[++len].x=x;t[len].y=y;t[len].c=c;
t[len].next=first[x];first[x]=len;
} int a[Maxn][Maxn];
int n; int lx[Maxn],ly[Maxn],match[Maxn],slack[Maxn];
bool visx[Maxn],visy[Maxn]; bool ffind(int x)
{
visx[x]=;
for(int i=first[x];i;i=t[i].next) if(!visy[t[i].y])
{
int y=t[i].y;
if(t[i].c==lx[x]+ly[y])
{
visy[y]=;
if(!match[y]||ffind(match[y]))
{
match[y]=x;
return ;
}
}
else slack[y]=mymin(slack[y],lx[x]+ly[y]-t[i].c);
}
return ;
} void solve()
{
memset(match,,sizeof(match));
memset(lx,,sizeof(lx));
memset(ly,,sizeof(ly));
for(int i=;i<=n;i++)
for(int j=first[i];j;j=t[j].next) lx[i]=mymax(lx[i],t[j].c); for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
slack[j]=INF;
while()
{
memset(visx,,sizeof(visx));
memset(visy,,sizeof(visy));
if(ffind(i)) break;
int delta=INF;
for(int j=;j<=n;j++)
{
if(!visy[j])
{
delta=mymin(delta,slack[j]);
}
}
if(delta==INF) return;
for(int j=;j<=n;j++)
{
if(visx[j]) lx[j]-=delta;
if(visy[j]) ly[j]+=delta;
else slack[j]-=delta;
}
}
}
} int main()
{
while(scanf("%d",&n)!=EOF)
{
len=;
memset(first,,sizeof(first));
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int x;
scanf("%d",&x);
ins(i,j,x);
}
solve();
for(int i=;i<=n;i++) printf("%d ",lx[i]);printf("\n");
for(int i=;i<=n;i++) printf("%d ",ly[i]);printf("\n");
int ans=;
for(int i=;i<=n;i++) ans+=lx[i]+ly[i];
printf("%d\n",ans);
}
return ;
}
[UVA 11383]
2016-10-27 15:13:52
【UVA 11383】 Golden Tiger Claw (KM算法副产物)的更多相关文章
- UVA 11383 - Golden Tiger Claw(二分图完美匹配扩展)
UVA 11383 - Golden Tiger Claw 题目链接 题意:给定每列和每行的和,给定一个矩阵,要求每一个格子(x, y)的值小于row(i) + col(j),求一种方案,而且全部行列 ...
- UVA 11383 Golden Tiger Claw 金虎爪(KM算法)
题意: 给一个n*n的矩阵,每个格子中有正整数w[i][j],试为每行和每列分别确定一个数字row[i]和col[i],使得任意格子w[i][j]<=row[i]+col[j]恒成立.先输row ...
- 【KM算法】UVA 11383 Golden Tiger Claw
题目大意 给你一个\(n×n\)的矩阵G,每个位置有一个权,求两个一维数组\(row\)和\(col\),使\(row[i] + col[j]\ge G[i][j]\),并且\(∑row+∑col\) ...
- UVA11383 Golden Tiger Claw —— KM算法
题目链接:https://vjudge.net/problem/UVA-11383 题解: 根据KM()算法,标杆满足:l(x) + l(y) >= w(x, y) . 当求完最大权匹配之后,所 ...
- UVA 11383 Golden Tiger Claw 题解
题目 --> 题解 其实就是一个KM的板子 KM算法在进行中, 需要满足两个点的顶标值之和大于等于两点之间的边权, 所以进行一次KM即可. KM之后, 顶标之和就是最小的.因为如果不是最小的,就 ...
- UVA11383 Golden Tiger Claw KM算法
题目链接:传送门 分析 这道题乍看上去没有思路,但是我们仔细一想就会发现这道题其实是一个二分图最大匹配的板子 我们可以把这道题想象成将男生和女生之间两两配对,使他们的好感度最大 我们把矩阵中的元素\( ...
- Uva - 11383 - Golden Tiger Claw
题意:一个N*N的矩阵,第i行第j列的元素大小为w[i][j],每行求一个数row[i],每列求一个数col[j],使得row[i] + col[j] >= w[i][j],且所有的row[]与 ...
- UVA 11383 Golden Tiger Claw(最佳二分图完美匹配)
题意:在一个N*N的方格中,各有一个整数w(i,j),现在要求给每行构造row(i),给每列构造col(j),使得任意w(i,j)<=row(i)+col(j),输出row(i)与col(j)之 ...
- uva11383 Golden Tiger Claw 深入理解km算法
/** 题目: uva11383 Golden Tiger Claw 深入理解km算法 链接:https://vjudge.net/problem/UVA-11383 题意:lv 思路:lrj训练指南 ...
随机推荐
- LaTeX 标题中使用 \bm 命令与 hyperref 的冲突
问题 当使用 hyperref 宏包时,在标题中使用 \bm 为数学符号加粗会出现错误 \documentclass{article} \usepackage{bm} \usepackage{hype ...
- html代码实现自动滚动,鼠标滑过时停止滚动
<marquee style="width: 1200px;height:200px;margin:0px auto" onmouseout="this.start ...
- android中使用Intent在activity之间传递数据
android中intent传递数据的简单使用: 1.使用intent传递数据: 首先将需要传递的数据放入到intent中 Intent intent = new Intent(MainActivit ...
- O-c中类的继承与派生的概念
什么是继承 众所周知,面向对象的编程语言具有: 抽象性, 封装性, 继承性, 以及多态性 的特征. 那么什么是继承呢? 传统意义上是指从父辈那里获得父辈留下的东西 在开发中, 继承就是"复用 ...
- prototype原型链继承
依旧是恶补js基础,上代码: 1.定义父类及父类方法 function Animal(){ this.name = "动物"; } Animal.prototype.eat = f ...
- Js编码和Java后台解码
1.java.将resultMsg 转为utf-8 (1) resultMsg = URLEncoder.encode(resultMsg, "utf-8"); (2) new S ...
- Codevs 1217 借教室 2012年NOIP全国联赛提高组
1217 借教室 2012年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 在大学期间,经常需要租借教 ...
- C#中的Collections命名空间
System.Collections命名空间包含可使用的集合类和相关的接口. 该命名空间下的.NET非泛型集合类如下所示: — System.Collections.ArrayList:数组集合类,使 ...
- js判断是否全是相同的字符串
isSameStr("aa2a") //不都是相同的字符 function isSameStr(str){ var tem=0; for(var i=0;i<str.leng ...
- iOS面试题6.30总结
越来越多的人投入iOS这个行业中,但是作为刚才学校毕业的学生,我们没有任何经验.或者经验很少.但是这也不能阻挡我们对苹果的热情,想投入iOS的开发中.而作为进入企业的第一步,我们要参加面试.面试中我们 ...