【UVA 11383】 Golden Tiger Claw (KM算法副产物)
Omi, Raymondo, Clay and Kimiko are on new adventure- in search of new Shen Gong Wu. But Evil
Boy Genius Jack Spicer is also there. Omi and Jack found the Shen Gong Wu at the same time so they
rushed for it but alas they touched it at the same time. Then what? It is time for “Xiaolin Showdown”.
Jack challenged Omi to play a game. The game is simple! There will be an N ∗ N board where
each cell in the board contains some number. They have to assign numbers to each row and column
separately so that w(i, j) ≤ row(i) + col(j) where w(i, j) is the number assigned to the cell located
at i-th row and j-th column, row(i) is the number assigned to i-th row and col(j) is the number
∑
assigned to j-th column. That is simple isnt it? Well . . . the main part is that you have to minimize
1≤i≤n
(row(i) + col(j)).
Jack has taken his favorite “Monkey Stuff” and Omi has taken “Golden Tiger Claw”. With the help
of this “Golden Tiger Claw”, he can go anywhere in the world. He has come to you and seeking your
help. Jack is using his computer to solve this problem. So do it quick! Find the most optimal solution
for Omi so that you can also be part of history in saving the world from the darkness of evil.
Input
Input contains 15 test cases. Each case starts with N. Then there are N lines containing N numbers
each. All the numbers in input is positive integer within the limit 100 except N which can be at most
500.
Output
For each case in the first line there will be N numbers, the row assignments. In the next line there
will N column assignment. And at the last line the minimum sum should be given. If there are several
possible solutions give any.
Note: Be careful about the output format. You may get Wrong Answer if you don’t output properly.
Sample Input
2
1 1
1 1
Sample Output
1 1
0 0
2
【题意】
给出一个n*n的矩阵(n<=500)给每一行x[i],每一列标号y[i],使得对任意a[i][j],x[i]+y[j]>=a[i][j]求行标与列标和最小
【分析】
事实上和最佳匹配没什么关系,但是我们进行KM算法的时候,有w(i,j)<=row(i)+col(j),并且算出来的顶标之和是最小的,so。。。
代码如下:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Maxn 510
#define Maxm 250010
#define INF 0xfffffff struct node
{
int x,y,c,next;
}t[Maxm];int len;
int first[Maxn]; int mymin(int x,int y) {return x<y?x:y;}
int mymax(int x,int y) {return x>y?x:y;} void ins(int x,int y,int c)
{
t[++len].x=x;t[len].y=y;t[len].c=c;
t[len].next=first[x];first[x]=len;
} int a[Maxn][Maxn];
int n; int lx[Maxn],ly[Maxn],match[Maxn],slack[Maxn];
bool visx[Maxn],visy[Maxn]; bool ffind(int x)
{
visx[x]=;
for(int i=first[x];i;i=t[i].next) if(!visy[t[i].y])
{
int y=t[i].y;
if(t[i].c==lx[x]+ly[y])
{
visy[y]=;
if(!match[y]||ffind(match[y]))
{
match[y]=x;
return ;
}
}
else slack[y]=mymin(slack[y],lx[x]+ly[y]-t[i].c);
}
return ;
} void solve()
{
memset(match,,sizeof(match));
memset(lx,,sizeof(lx));
memset(ly,,sizeof(ly));
for(int i=;i<=n;i++)
for(int j=first[i];j;j=t[j].next) lx[i]=mymax(lx[i],t[j].c); for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
slack[j]=INF;
while()
{
memset(visx,,sizeof(visx));
memset(visy,,sizeof(visy));
if(ffind(i)) break;
int delta=INF;
for(int j=;j<=n;j++)
{
if(!visy[j])
{
delta=mymin(delta,slack[j]);
}
}
if(delta==INF) return;
for(int j=;j<=n;j++)
{
if(visx[j]) lx[j]-=delta;
if(visy[j]) ly[j]+=delta;
else slack[j]-=delta;
}
}
}
} int main()
{
while(scanf("%d",&n)!=EOF)
{
len=;
memset(first,,sizeof(first));
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int x;
scanf("%d",&x);
ins(i,j,x);
}
solve();
for(int i=;i<=n;i++) printf("%d ",lx[i]);printf("\n");
for(int i=;i<=n;i++) printf("%d ",ly[i]);printf("\n");
int ans=;
for(int i=;i<=n;i++) ans+=lx[i]+ly[i];
printf("%d\n",ans);
}
return ;
}
[UVA 11383]
2016-10-27 15:13:52
【UVA 11383】 Golden Tiger Claw (KM算法副产物)的更多相关文章
- UVA 11383 - Golden Tiger Claw(二分图完美匹配扩展)
UVA 11383 - Golden Tiger Claw 题目链接 题意:给定每列和每行的和,给定一个矩阵,要求每一个格子(x, y)的值小于row(i) + col(j),求一种方案,而且全部行列 ...
- UVA 11383 Golden Tiger Claw 金虎爪(KM算法)
题意: 给一个n*n的矩阵,每个格子中有正整数w[i][j],试为每行和每列分别确定一个数字row[i]和col[i],使得任意格子w[i][j]<=row[i]+col[j]恒成立.先输row ...
- 【KM算法】UVA 11383 Golden Tiger Claw
题目大意 给你一个\(n×n\)的矩阵G,每个位置有一个权,求两个一维数组\(row\)和\(col\),使\(row[i] + col[j]\ge G[i][j]\),并且\(∑row+∑col\) ...
- UVA11383 Golden Tiger Claw —— KM算法
题目链接:https://vjudge.net/problem/UVA-11383 题解: 根据KM()算法,标杆满足:l(x) + l(y) >= w(x, y) . 当求完最大权匹配之后,所 ...
- UVA 11383 Golden Tiger Claw 题解
题目 --> 题解 其实就是一个KM的板子 KM算法在进行中, 需要满足两个点的顶标值之和大于等于两点之间的边权, 所以进行一次KM即可. KM之后, 顶标之和就是最小的.因为如果不是最小的,就 ...
- UVA11383 Golden Tiger Claw KM算法
题目链接:传送门 分析 这道题乍看上去没有思路,但是我们仔细一想就会发现这道题其实是一个二分图最大匹配的板子 我们可以把这道题想象成将男生和女生之间两两配对,使他们的好感度最大 我们把矩阵中的元素\( ...
- Uva - 11383 - Golden Tiger Claw
题意:一个N*N的矩阵,第i行第j列的元素大小为w[i][j],每行求一个数row[i],每列求一个数col[j],使得row[i] + col[j] >= w[i][j],且所有的row[]与 ...
- UVA 11383 Golden Tiger Claw(最佳二分图完美匹配)
题意:在一个N*N的方格中,各有一个整数w(i,j),现在要求给每行构造row(i),给每列构造col(j),使得任意w(i,j)<=row(i)+col(j),输出row(i)与col(j)之 ...
- uva11383 Golden Tiger Claw 深入理解km算法
/** 题目: uva11383 Golden Tiger Claw 深入理解km算法 链接:https://vjudge.net/problem/UVA-11383 题意:lv 思路:lrj训练指南 ...
随机推荐
- iOS应用审核的通关秘籍
磨刀不误砍柴工.作为手机应用开发者,你需要向应用商店提交应用审核,迅速通过审核可以让你抢占先机.对苹果iOS应用开发者来说尤其如此.苹果应用商店的审核近乎吹毛求疵,下面这些清单可以让你知道苹果会在哪些 ...
- JavaScript入门(3)
一.认识DOM 文档对象模型DOM(Document Object Model)定义访问和处理HTML文档的标准方法.DOM将HTML文档呈现为带有元素.属性和文本的树结构(节点树). Eg: 将HT ...
- VC++ Bresenham画线实例
附带百度链接:http://wenku.baidu.com/link?url=GP4uDkoyulgNxQy5djBBi-JB5BCrMWW6svMDhSfmzi_Qi1s6DhwJiCPHdMI2o ...
- java反射技术
Class c2 = Class.forName("com.reflection.Test"); // 对类的寻找,找到一个类,注意不是对象 WifiManager mWifiMa ...
- java中对除法取2位小数的一点试验
如下程序, double a = 12.3333333,b = 11.22222222222; double c = 0; String d = String.format("%.2f&qu ...
- 计算Android屏幕解锁组合数
晚饭时和同事聊到安卓屏幕解锁时会有多少种解锁方案,觉得很有趣,吃完饭开始想办法解题,花了大概2个小时解决.思路如下: 使用索引值0-9表示从左到右.从上到下的9个点,行.列号很容易从索引值得到: 使用 ...
- 关于MDCSwipeToChooseView的应用
本人因为项目中某个页面的功能需要,用到了MDCSwipeToChooseView,就在网上查阅了相关的资料,资源有很多,但应该都是同一个人上传的,code4还有git上都有,但下载demo下来后运行不 ...
- OAuth2.0授权和SSO授权
一. OAuth2.0授权和SSO授 1. OAuth2.0 --> 网页 --> 当前程序内授权 --> 输入账号密码 --> (自己需要获取到令牌, 自己处理逻辑) 授权成 ...
- android中相关的图形类
Bitmap - 称作位图,一般位图的文件格式后缀为bmp,当然编码器也有很多如RGB565.RGB888.作为一种逐像素的显示对象执行效率高,但是缺点也很明显存储效率低.我们理解为一种存储对象比较好 ...
- 操作系统之进程篇(4)--经典进程间通信(IPC)问题
1. 哲学家进餐问题: 问题描述: 五个哲学家在一个圆桌上进餐,每人的面前放了一盘意大利面,两个盘子之间有一个叉子,但是由于盘子里面的面条十分光滑,需要两个叉子才能进行就餐行为.餐桌的布局如下图所示: ...