Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:


In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

【题意】
就是求两个点的最近公共祖先。 【分析】
  这题可以用倍增做,这次我用了树剖,感觉还挺好打的,嗯嗯...
  感觉是因为不可能跳两条重链都越过LCA,因为一个点向下只连一条重边。所以每次调dep较大的边跳就好了。
int LCA(int a, int b)
{
while (1)
{
if(top[a]==top[b]) return dep[a]<=dep[b]?a:b;
else if(dep[top[a]]>=dep[top[b]]) a=fa[top[a]];
else b=fa[top[b]];
}
}

  就是这样。

  感觉是因为不可能跳两条边都越过LCA的,因为一个点向下只连着一条重边,所以我们每次选短的那一条跳就好了。

  http://www.xuebuyuan.com/552070.html

  这里有详细证明^^^

代码如下:

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 10010
#define INF 100000000 int fa[Maxn],first[Maxn],size[Maxn],dep[Maxn],son[Maxn];
int w[Maxn],top[Maxn];int wl;
bool q[Maxn]; struct node
{
int x,y,next;
}t[*Maxn];int len; int mymax(int x,int y) {return x>y?x:y;}
int mymin(int x,int y) {return x<y?x:y;} void ins(int x,int y)
{
t[++len].x=x;t[len].y=y;
t[len].next=first[x];first[x]=len;
} void dfs1(int x,int f)
{
fa[x]=f;dep[x]=dep[f]+;size[x]=;
son[x]=;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=f)
{
dfs1(t[i].y,x);
size[x]+=size[t[i].y];
if(size[t[i].y]>size[son[x]]) son[x]=t[i].y;
}
} void dfs2(int x,int tp)
{
w[x]=++wl;
top[x]=tp;
if(size[x]!=) dfs2(son[x],tp);
for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa[x]&&t[i].y!=son[x])
{
dfs2(t[i].y,t[i].y);
}
} int LCA(int a, int b)
{
while ()
{
if(top[a]==top[b]) return dep[a]<=dep[b]?a:b;
else if(dep[top[a]]>=dep[top[b]]) a=fa[top[a]];
else b=fa[top[b]];
}
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
memset(first,,sizeof(first));
memset(q,,sizeof(q));
len=;
for(int i=;i<n;i++)
{
int x,y,c;
scanf("%d%d",&x,&y);
q[y]=;
ins(x,y);//ins(y,x);
}
int root;
for(int i=;i<=n;i++) if(!q[i]) root=i;
dep[]=;size[]=;
dfs1(root,);wl=;
dfs2(root,);
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",LCA(x,y));
}
return ;
}

[POJ1330]

2016-05-08 17:13:07

【POJ1330】Nearest Common Ancestors(树链剖分求LCA)的更多相关文章

  1. 树链剖分求LCA

    树链剖分中各种数组的作用: siz[]数组,用来保存以x为根的子树节点个数 top[]数组,用来保存当前节点的所在链的顶端节点 son[]数组,用来保存重儿子 dep[]数组,用来保存当前节点的深度 ...

  2. cogs 2450. 距离 树链剖分求LCA最近公共祖先 快速求树上两点距离 详细讲解 带注释!

    2450. 距离 ★★   输入文件:distance.in   输出文件:distance.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 在一个村子里有N个房子,一 ...

  3. cogs 2109. [NOIP 2015] 运输计划 提高组Day2T3 树链剖分求LCA 二分答案 差分

    2109. [NOIP 2015] 运输计划 ★★★☆   输入文件:transport.in   输出文件:transport.out   简单对比时间限制:3 s   内存限制:256 MB [题 ...

  4. HDU2586 How far away ? (树链剖分求LCA)

    用树链剖分求LCA的模板: 1 #include<iostream> 2 #include<algorithm> 3 using namespace std; 4 const ...

  5. 【树链剖分】洛谷P3379 树链剖分求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  6. 【模板】树链剖分求LCA

    洛谷3379 #include<cstdio> #include<algorithm> using namespace std; ,inf=1e9; int n,m,x,y,r ...

  7. Hdu 2586 树链剖分求LCA

    Code: #include<cstdio> #include<cstring> #include<vector> #include<algorithm> ...

  8. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  9. Luogu 2680 NOIP 2015 运输计划(树链剖分,LCA,树状数组,树的重心,二分,差分)

    Luogu 2680 NOIP 2015 运输计划(树链剖分,LCA,树状数组,树的重心,二分,差分) Description L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之 ...

随机推荐

  1. oracle数据库敏感操作前创建还原点

    我们都知道,在vmware虚拟机中有一个拍摄快照的功能,我们可以把系统此时的状态保存下来,一方后面遇到不测事件,也好将系统还原,oracle中也有类似功能. 首先创建一张学生表: 向学生表中插入一条数 ...

  2. C++中各种数据量类型转换

    要在Unicode字符集环境下把CString转化为char* 方法: CString str = _T("D://校内项目//QQ.bmp");//////leo这个NB  可以 ...

  3. 给自己取了个英文名-Jamy Cai,哈哈~~

    给自己取了个英文名:Jamy Cai, 同时开始启用新邮箱:Jamycai@outlook.com ~~

  4. Windows系统下搭建Jenkins环境

    1. 安装JDK JDK下载地址:  http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.ht ...

  5. NLog 安装使用

    1:安装 Install-Package NLog.Config 或 通过Nuget 2:Log levels Trace 非常详细的信息,一般在开发时使用. Debug 比Trace稍微少一点一般不 ...

  6. MongoDB 3.0安全权限访问控制(Windows版)

    MongoDB 3.0安全权限访问控制(Windows版) 1.首先,不使用 –auth 参数,启动 mongoDB: mongod --dbpath "d:\mongodb\data\db ...

  7. asp.net各种获取客户端ip方法

    Request.ServerVariables("REMOTE_ADDR") 来取得客户端的IP地址,但如果客户端是使用代理服务器来访问,那取到的就是代理服务器的IP地址,而不是真 ...

  8. [GDI+] C# ImageDown帮助类教程与源码下载 (转载)

    点击下载 ImageDown.zip 1.下载图片到本地代码如下 /// <summary> /// 编 码 人:苏飞 /// 联系方式:361983679 /// 更新网站:[url=h ...

  9. Python:对象

    #!/usr/bin/python3 #对象实例 class Person: num=200 def __init__(self,name,sex): self.name=name self.sex= ...

  10. 查看当前linux系统位数

    linux系统也有位数之分,所以在linux上安装一些软件,比如jdk之类的就需要注意下版本. 查看linux系统位数最简单的命令(这里以redhat为例,不同版本linux命令也许不同) 命令1:g ...