【POJ1330】Nearest Common Ancestors(树链剖分求LCA)
Description
A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.
Write a program that finds the nearest common ancestor of two distinct nodes in a tree.
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.Output
Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.Sample Input
2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5Sample Output
4
3
【题意】
就是求两个点的最近公共祖先。 【分析】
这题可以用倍增做,这次我用了树剖,感觉还挺好打的,嗯嗯...
感觉是因为不可能跳两条重链都越过LCA,因为一个点向下只连一条重边。所以每次调dep较大的边跳就好了。
int LCA(int a, int b)
{
while (1)
{
if(top[a]==top[b]) return dep[a]<=dep[b]?a:b;
else if(dep[top[a]]>=dep[top[b]]) a=fa[top[a]];
else b=fa[top[b]];
}
}
就是这样。
感觉是因为不可能跳两条边都越过LCA的,因为一个点向下只连着一条重边,所以我们每次选短的那一条跳就好了。
http://www.xuebuyuan.com/552070.html
这里有详细证明^^^
代码如下:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 10010
#define INF 100000000 int fa[Maxn],first[Maxn],size[Maxn],dep[Maxn],son[Maxn];
int w[Maxn],top[Maxn];int wl;
bool q[Maxn]; struct node
{
int x,y,next;
}t[*Maxn];int len; int mymax(int x,int y) {return x>y?x:y;}
int mymin(int x,int y) {return x<y?x:y;} void ins(int x,int y)
{
t[++len].x=x;t[len].y=y;
t[len].next=first[x];first[x]=len;
} void dfs1(int x,int f)
{
fa[x]=f;dep[x]=dep[f]+;size[x]=;
son[x]=;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=f)
{
dfs1(t[i].y,x);
size[x]+=size[t[i].y];
if(size[t[i].y]>size[son[x]]) son[x]=t[i].y;
}
} void dfs2(int x,int tp)
{
w[x]=++wl;
top[x]=tp;
if(size[x]!=) dfs2(son[x],tp);
for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa[x]&&t[i].y!=son[x])
{
dfs2(t[i].y,t[i].y);
}
} int LCA(int a, int b)
{
while ()
{
if(top[a]==top[b]) return dep[a]<=dep[b]?a:b;
else if(dep[top[a]]>=dep[top[b]]) a=fa[top[a]];
else b=fa[top[b]];
}
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
memset(first,,sizeof(first));
memset(q,,sizeof(q));
len=;
for(int i=;i<n;i++)
{
int x,y,c;
scanf("%d%d",&x,&y);
q[y]=;
ins(x,y);//ins(y,x);
}
int root;
for(int i=;i<=n;i++) if(!q[i]) root=i;
dep[]=;size[]=;
dfs1(root,);wl=;
dfs2(root,);
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",LCA(x,y));
}
return ;
}
[POJ1330]
2016-05-08 17:13:07
【POJ1330】Nearest Common Ancestors(树链剖分求LCA)的更多相关文章
- 树链剖分求LCA
树链剖分中各种数组的作用: siz[]数组,用来保存以x为根的子树节点个数 top[]数组,用来保存当前节点的所在链的顶端节点 son[]数组,用来保存重儿子 dep[]数组,用来保存当前节点的深度 ...
- cogs 2450. 距离 树链剖分求LCA最近公共祖先 快速求树上两点距离 详细讲解 带注释!
2450. 距离 ★★ 输入文件:distance.in 输出文件:distance.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 在一个村子里有N个房子,一 ...
- cogs 2109. [NOIP 2015] 运输计划 提高组Day2T3 树链剖分求LCA 二分答案 差分
2109. [NOIP 2015] 运输计划 ★★★☆ 输入文件:transport.in 输出文件:transport.out 简单对比时间限制:3 s 内存限制:256 MB [题 ...
- HDU2586 How far away ? (树链剖分求LCA)
用树链剖分求LCA的模板: 1 #include<iostream> 2 #include<algorithm> 3 using namespace std; 4 const ...
- 【树链剖分】洛谷P3379 树链剖分求LCA
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 【模板】树链剖分求LCA
洛谷3379 #include<cstdio> #include<algorithm> using namespace std; ,inf=1e9; int n,m,x,y,r ...
- Hdu 2586 树链剖分求LCA
Code: #include<cstdio> #include<cstring> #include<vector> #include<algorithm> ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- Luogu 2680 NOIP 2015 运输计划(树链剖分,LCA,树状数组,树的重心,二分,差分)
Luogu 2680 NOIP 2015 运输计划(树链剖分,LCA,树状数组,树的重心,二分,差分) Description L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之 ...
随机推荐
- hdu2018java
母牛的故事 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- Base64工具类
public final class AbBase64 { /** The Constant base64EncodeChars. */ private static final char[] bas ...
- 设计模式——工厂模式 (C++实现)
软件领域中的设计模式为开发人员提供了一种使用专家设计经验的有效途径.设计模式中运用了面向对象编程语言的重要特性:封装.继承.多态,真正领悟设计模式的精髓是可能一个漫长的过程,需要大量实践经验的积累. ...
- js移除最后一个字符,js替换字符串的连接符号,js移除最后一个分隔符号
js移除最后一个字符 js移除最后一个分隔符号 js替换字符串的连接符号 >>>>>>>>>>>>>>>> ...
- jquery.validate.js校验select2解决方案,Jquery插件select2校验解决方案
jquery.validate.js校验select2解决方案 Jquery插件select2校验解决方案 >>>>>>>>>>>&g ...
- 第一篇:杂项之pymysql连接池
杂项之pymysql连接池 杂项之pymysql连接池 本节内容 本文的诞生 连接池及单例模式 多线程提升 协程提升 后记 1.本文的诞生 由于前几天接触了pymysql,在测试数据过程中,使用普 ...
- Attribute 特性
转载 不错 摘要:纠结地说,这应该算是一篇关于Attribute 的笔记,其中的一些思路和代码借鉴了他人的文笔(见本文底部链接).但是,由于此文对Attribute 的讲解实在是叫好(自夸一下 ...
- OPENQUERY
SELECT * FROM OPENQUERY(saql007,' SELECT col1,col2,col3 FROM dbname.shemaname.tablename WHERE (1=1 ...
- Access的转义字符
Access中数据库转义字符规则: 插入.更新.=匹配 数据时,文本类型如用''括起来,中间可以有 ",*,%,[,],/,/,?,(,),{,}的任意组合,如要插入一个',需写''并在整个 ...
- Oracle 11g 新特性(一)-- 虚拟列
数据库版本: Oracle Database 11g Enterprise Edition Release 11.2.0.2.0 - 64bit Oracle11g 增加了虚拟列的新特性, 具体说明如 ...