将选择导师看成先选阵营再选派系,这样有显然的O(nm2)暴力,即按城市排序后,设f[i][j][k]为前i个学校中第一个阵营有j人第一个派系有k人的方案数,暴力背包。

  对于k=0,可以发现选阵营和选派系是两个独立的过程。于是O(nm)暴力背包再将方案数相乘即可。

  考虑原题,注意到如果一个城市不包含有限制的学校,可以直接使用k=0的方法;对于同城市存在有限制学校而自身没有限制的,其选择派系的过程与限制无关,可以将这部分背包,而选择阵营的过程则和有限制学校放在一起用最开始的暴力完成,这里同一城市的无限制学校可以合并起来。于是复杂度O(nm+km2)。稍微卡一下可以做到复杂度O(nm+kmΣsk),其中Σsk为有限制学校总人数。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1010
#define M 2510
#define P 998244353
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int T,n,c,k,C0,C1,D0,D1,S,dslk[N],id[N],f[M],g[M],h[M][M],h2[M][M];
bool islim[N];
struct data
{
int x,y,i;
bool operator <(const data&a) const
{
return x<a.x;
}
}a[N];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read(),c=read();
C0=read(),C1=read(),D0=read(),D1=read();S=0;
for (int i=1;i<=n;i++) a[i].x=read(),a[i].y=read(),a[i].i=i,S+=a[i].y;
sort(a+1,a+n+1);
for (int i=1;i<=n;i++) id[a[i].i]=i;
C1=max(0,S-C1),D1=max(0,S-D1);
k=read();
memset(dslk,0,sizeof(dslk));
memset(islim,0,sizeof(islim));
for (int i=1;i<=k;i++)
{
int x=id[read()],y=read();
dslk[x]=y+1;islim[a[x].x]=1;
}
memset(f,0,sizeof(f));memset(g,0,sizeof(g));memset(h,0,sizeof(h));
f[0]=g[0]=1;h[0][0]=1;
int tot=0,tot2=0;
for (int i=1;i<=n;i++)
{
int t=i;
while (t<n&&a[t+1].x==a[i].x) t++;
int s=0;
for (int j=i;j<=t;j++)
if (!dslk[j])
{
s+=a[j].y;
for (int k=D0;k>=a[j].y;k--) inc(g[k],g[k-a[j].y]);
}
if (islim[a[i].x])
{
for (int j=i;j<=t;j++)
{
tot+=a[j].y;
if (dslk[j]) tot2+=a[j].y;
}
for (int x=0;x<=min(tot,C0);x++)
for (int y=0;y<=min(tot2,D0);y++)
h2[x][y]=x>=s?h[x-s][y]:0;
for (int j=i;j<=t;j++)
if (dslk[j])
{
for (int x=min(tot,C0);x>=0;x--)
for (int y=min(tot2,D0);y>=0;y--)
{
h2[x][y]=0;
if (dslk[j]!=1&&x>=a[j].y&&y>=a[j].y) inc(h2[x][y],h2[x-a[j].y][y-a[j].y]);
if (dslk[j]!=2&&x>=a[j].y) inc(h2[x][y],h2[x-a[j].y][y]);
}
}
for (int j=i;j<=t;j++)
if (dslk[j])
{
for (int x=min(tot,C0);x>=0;x--)
for (int y=min(tot2,D0);y>=0;y--)
{
if (dslk[j]==4) h[x][y]=0;
if (dslk[j]!=3&&y>=a[j].y) inc(h[x][y],h[x][y-a[j].y]);
}
}
for (int x=0;x<=min(tot,C0);x++)
for (int y=0;y<=min(tot2,D0);y++)
inc(h[x][y],h2[x][y]);
}
else for (int k=C0;k>=s;k--) inc(f[k],f[k-s]);
i=t;
}
for (int i=1;i<=C0;i++) inc(f[i],f[i-1]);
for (int i=1;i<=D0;i++) inc(g[i],g[i-1]);
int ans=0;
for (int i=0;i<=C0;i++)
for (int j=0;j<=D0;j++)
inc(ans,1ll*(f[C0-i]-f[max(C1-i,0)-1]+P)*(g[D0-j]-g[max(D1-j,0)-1]+P)%P*h[i][j]%P);
cout<<ans<<endl;
}
return 0;
}

  

Luogu5289 十二省联考2019皮配(动态规划)的更多相关文章

  1. 【BZOJ5498】[十二省联考2019]皮配(动态规划)

    [BZOJ5498][十二省联考2019]皮配(动态规划) 题面 BZOJ 洛谷 题解 先考虑暴力\(dp\),设\(f[i][j][k]\)表示前\(i\)所学校,有\(j\)人在某个阵营,有\(k ...

  2. luogu P5289 [十二省联考2019]皮配 背包

    LINK:皮配 我承认是一道很难的题目. 不过对于这道题 部分分的提示显得尤为重要. 首先是 40分的暴力dp 很容易想 但是不容易写. 从40分可以发现我们只需要把蓝阵营和鸭派系的人数给存在起来就行 ...

  3. 洛谷P5289 [十二省联考2019]皮配(01背包)

    啊啊啊边界判错了搞死我了QAQ 这题是一个想起来很休闲写起来很恶心的背包 对于\(k=0\)的情况,可以发现选阵营和选派系是独立的,对选城市选阵营和学校选派系分别跑一遍01背包就行了 对于\(k> ...

  4. luogu P5289 [十二省联考2019]皮配

    传送门 首先考虑一个正常的dp,设\(f_{i,j,k}\)为前\(i\)个学校,\(j\)人在\(\color{#0000FF}{蓝阵营}\),\(k\)人在\(\color{#654321}{吔} ...

  5. 【LuoguP5289】[十二省联考2019] 皮配

    题目链接 题目描述 略 Sol 一道背包问题 首先暴力做法设 \(dp[i][j][k]\) 表示前 \(i\) 个城市的学校被分到第一阵营 \(j\) 人 第一门派 \(k\) 人的方案数. 中间一 ...

  6. Luogu5289 十二省联考2019字符串问题(后缀数组+拓扑排序+线段树/主席树/KDTree)

    先考虑80分做法,即满足A串长度均不小于B串,容易发现每个B串对应的所有A串在后缀数组上都是一段连续区间,线段树优化连边然后判环求最长链即可.场上就写了这个. 100分也没有什么本质区别,没有A串长度 ...

  7. 【LOJ】#3051. 「十二省联考 2019」皮配

    LOJ#3051. 「十二省联考 2019」皮配 当时我在考场上觉得这题很不可做... 当然,出了考场后再做,我还是没发现学校和城市是可以分开的,导致我还是不会 事实上,若一个城市投靠了某个阵营,学校 ...

  8. [十二省联考2019]字符串问题——后缀自动机+parent树优化建图+拓扑序DP+倍增

    题目链接: [十二省联考2019]字符串问题 首先考虑最暴力的做法就是对于每个$B$串存一下它是哪些$A$串的前缀,然后按每组支配关系连边,做一遍拓扑序DP即可. 但即使忽略判断前缀的时间,光是连边的 ...

  9. [十二省联考2019]异或粽子——可持久化trie树+堆

    题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...

随机推荐

  1. IEC104协议规约解析

    一.四遥信息体基地址范围 104调度规约有1997年和2002年两个版本,在流程上没有什么变化,02版只是在97版上扩展了遥测.遥信等信息体基体址,区别如下: 类别 1997版基地址 2002版基地址 ...

  2. OPC协议解析-OPC客户端与服务器通讯解析

    1      OPC服务器 OPC服务器, 是指按照OPC基金组织规定的OPC规范群开发的软件驱动.OPC服务器作为中间媒介负责从数据源读取数据再跟另外一端的客户端通信.在 OPC客户端/服务器 的结 ...

  3. ionic3 Toast组件

    html页面 <button ion-button color="dark" class="button-block" (click)="sho ...

  4. 监控 redis 执行命令

    监控 redis 执行命令 Intro 最近在用 redis 的时候想看看执行了哪些命令,于是发现了 redis-cli 提供的 Monitor 命令,直接使用这个就可以监控执行的大部分 redis ...

  5. Git - git clone - 将远端仓库克隆拷贝到本地

    索引: 目录索引 参看代码 GitHub: git.txt 一.示例: git clone https://github.com/liumeng0403/lm.solution.git 二.说明: 1 ...

  6. 微信小程序基本目录结构学习

    今天我们就以firstdemo为例,介绍一下小程序的基本目录结构.当我们打开一个微信小程序项目后,点击进入“编辑”菜单,我们可以看到有以下5个文件/文件夹):pages文件夹,utils文件夹,全局文 ...

  7. VS根据数据库生成实体类

    一.在类库项目上添加新项 二. 三.依次填入数据库连接 选择数据库 就可以生成数据库实体

  8. iOS开发之Swift 4 JSON 解析指南

    Apple 终于在 Swift 4 的 Foundation 的模块中添加了对 JSON 解析的原生支持. 虽然已经有很多第三方类库实现了 JSON 解析,但是能够看到这样一个功能强大.易于使用的官方 ...

  9. errno 的使用

    error是一个包含在<errno.h>中的预定义的外部int变量,用于表示最近一个函数调用是否产生了错误.若为0,则无错误,其它值均表示一类错误. perror()和strerror() ...

  10. LinuxMint上安装redis和python遇到的一些问题

    今天在安装Redis和Python上遇到了些问题,解决后记录下来. 环境:LinuxMint 18.3 安装redis sudo wget http://download.redis.io/relea ...