//P2002解题思路:
//先求SCC,缩点后,转换为DAG(有向无环图)
//在DAG上统计入度为0的scc数量即可 //Kosaraju时间复杂度:O(N+E)
//两次DFS,2N,图的转置E,共2N+E
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=500010;
struct edge{ int t; edge *nxt; edge(int to, edge * next){ t=to, nxt=next; } };
edge * h1[maxn], * h2[maxn]; //h2是反图
void add1(int u, int v){ h1[u]=new edge(v, h1[u]); }
void add2(int u, int v){ h2[u]=new edge(v, h2[u]); }
int n, m, v[maxn], st[maxn], st_k, sccno[maxn], scc_cnt, scc_indegree[maxn]; void dfs1(int x)
{
v[x]=1;
for(edge * p=h1[x]; p; p=p->nxt) if(!v[p->t]) dfs1(p->t);
st[++st_k]=x;
} void dfs2(int x)
{
v[x]=1;
sccno[x]=scc_cnt;
for(edge * p=h2[x]; p; p=p->nxt) if(!v[p->t]) dfs2(p->t);
} void kosaraju()
{
for(int i=1; i<=n; i++) if(!v[i]) dfs1(i);
memset(v, 0, sizeof(v));
for(int i=st_k; i>=1; i--)
if(!v[st[i]]) scc_cnt++, dfs2(st[i]);
} int main()
{
scanf("%d%d", &n, &m);
for(int i=1, b, e; i<=m; i++)
{
scanf("%d%d", &b, &e);
if(b!=e) add1(b, e), add2(e, b); //去除自环
}
kosaraju();
for(int i=1; i<=n; i++) //统计每个scc的入度
for(edge *p=h1[i]; p; p=p->nxt)
if(sccno[i]!=sccno[p->t]) scc_indegree[sccno[p->t]]++; //起点和终点不在一个scc中才统计入度
int ans=0;
for(int i=1; i<=scc_cnt; i++) if(!scc_indegree[i]) ans++; //统计入度为0的scc的个数
printf("%d\n", ans);
return 0;
}

强连通分量(Kosaraju)的更多相关文章

  1. POJ 2186 Popular Cows(强连通分量Kosaraju)

    http://poj.org/problem?id=2186 题意: 一个有向图,求出点的个数(任意点可达). 思路: Kosaraju算法的第一次dfs是后序遍历,而第二次遍历时遍历它的反向图,从标 ...

  2. 有向图的强连通分量——kosaraju算法

    一.前人种树 博客:Kosaraju算法解析: 求解图的强连通分量

  3. 模板 - 图论 - 强连通分量 - Kosaraju算法

    这个算法是自己实现的Kosaraju算法,附带一个缩点,其实缩点这个跟Kosaraju算法没有什么关系,应该其他的强连通分量算法计算出每个点所属的强连通分量之后也可以这样缩点. 算法复杂度: Kosa ...

  4. 模板 - 强连通分量 - Kosaraju

    Kosaraju算法 O(n+m) vector<int> s; void dfs1(int u) { vis[u] = true; for (int v : g[u]) if (!vis ...

  5. 强连通分量-----Kosaraju

    芝士: 有向图强连通分量在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connect ...

  6. 图的强连通分量-Kosaraju算法

    输入一个有向图,计算每个节点所在强连通分量的编号,输出强连通分量的个数 #include<iostream> #include<cstring> #include<vec ...

  7. 强连通分量Kosaraju

    #include<cstdio> #include<algorithm> #include<iostream> #include<cstring> #i ...

  8. 有向图强连通分量的Tarjan算法和Kosaraju算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  9. 图论-求有向图的强连通分量(Kosaraju算法)

    求有向图的强连通分量     Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序 ...

  10. POJ2186 Popular Cows 【强连通分量】+【Kosaraju】+【Tarjan】+【Garbow】

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 23445   Accepted: 9605 Des ...

随机推荐

  1. 通过maven profile 打包指定环境配置

    背景 最近换了个新公司接手了一个老项目,然后比较坑的是这个公司的项目都没有没有做多环境打包配置,每次发布一个环境都要手动的去修改配置文件.今天正好有空就来配置下. 解决这个问题的方式有很多,我这里挑选 ...

  2. DVWA 黑客攻防演练(十四)CSRF 攻击 Cross Site Request Forgery

    这么多攻击中,CSRF 攻击,全称是 Cross Site Request Forgery,翻译过来是跨站请求伪造可谓是最防不胜防之一.比如删除一篇文章,添加一笔钱之类,如果开发者是没有考虑到会被 C ...

  3. 搭建 structs2 环境

    前言 环境: window 10 ,JDK 1.8 ,Tomcat 7 ,MyEclipse 2014 pro 搭建 SSH 环境的步骤 创建 JavaWeb 项目 导入 structs2 的jar包 ...

  4. Django-0-环境搭建、创建项目、启动服务

    1- 创建虚拟环境名称(在虚拟机中) mkvirtualenv -p /usr/bin/python3 envname   (/usr/bin/python3 - 你自己在虚拟机中的Python解释器 ...

  5. 【P2577】 午餐

    题目简述 THU ACM小组一行N个人去食堂吃饭,计划是这样的:先把所有的人分成两队,并安排好每队中各人的排列顺序,然后一号队伍到一号窗口去排队打饭,二号队伍到二号窗口去排队打饭.每个人打完饭后立刻开 ...

  6. .NET开源快速开发框架Colder发布 (NET452+AdminLTE版)

    .NET开源快速开发框架Colder(NET452+AdminLTE版) 引言 半年前将基于Easyui的快速开发框架开源,三个版本(NET4.52,NETCore和NET4.0)总共荣获200+星, ...

  7. 电梯调度编写(oo-java编程)

    第二单元的问题是写一个关于电梯调度的程序. 需要模拟一个多线程实时电梯系统,从标准输入中输入请求信息,程序进行接收和处理,模拟电梯运行,将必要的运行信息通过输出接口进行输出. 主要锻炼学生的多线程程序 ...

  8. iOS截屏并修改截图然后分享的功能实现

    一. 实现的效果类似微博的截图分享 不仅截图分享的时候还进行图片的修改,增加自己的二维码 二.实现方式 苹果在ios7之后提供了一个新的通知类型:UIApplicationUserDidTakeScr ...

  9. 菜鸟学IT之python词云初体验

    作业来源:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2822 1. 下载一长篇中文小说. 2. 从文件读取待分析文本. txt = ...

  10. python使用装饰器对文件进行读写操作'及遍历文件目录

    '''使用装饰器对文件进行读写操作''' # def check_permission(func): # '''演示嵌套函数定义及使用''' # def wrapper(*args,**kwargs) ...