导入类库

 from pyecharts import Pie, Bar, Gauge, EffectScatter, WordCloud, Map, Grid, Line, Timeline
import random

make_point:标注,类似于matplotlib的text

is_stack:堆叠,将同一图表中的不同图像堆叠显示

is_label_show:显示每个数据的标注

is_datazoom_show:数据缩放显示

地图

 value = [120, 110]
attr = [u'河南', u'浙江']
map = Map(u'Map 结合 VisualMap 示例', width=1200, height=600)
map.use_theme('dark')
map.add('', attr, value, maptype=u'china', is_visualmap=True, visual_text_color='#000')
map.render('map.html')

堆叠柱状图

 attr = ['衬衫', '羊毛衫', '雪纺衫', '裤子', '高跟鞋', '袜子']
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
bar = Bar('柱状图数据堆叠示例')
bar.add('商家A', attr, v1, mark_point=['average'], is_stack=True)
bar.add('商家B', attr, v2, mark_point=['min', 'max'], is_stack=True)
bar.render('bar.html')

收缩柱状图

 attr = ['{}天'.format(i) for i in range(30)]
v1 = [random.randint(1, 30) for _ in range(30)]
bar = Bar('Bar - datazoom - slider示例')
bar.use_theme('dark')
bar.add('', attr, v1, is_label_show=True, is_datazoom_show=True, is_more_utils=True)
bar.render('bar_slider.html')
# 上面可以通过下面一句链式调用
# (Bar().add().add().render())

仪表盘

 gauge = Gauge('仪表盘示例')
gauge.add('业务指标', '完成率', 66.66)
gauge.render('gauge.html')

散点图

 v1 = [10, 20, 30, 40, 50, 60]
v2 = [25, 20, 15, 10, 60, 33]
es = EffectScatter('动态散点图示例')
es.add('effectScatter', v1, v2)
es.render('effectScatter.html')

词云

 name = [u'网络', u'数据分析.txt', u'hadoop', u'flask']
value = [10000, 6000, 4000, 3000]
wd = WordCloud(width=1300, height=620)
wd.add('', name, value, word_size_range=(20, 100))
wd.render('wordcloud.html')

饼图

 attr = ['衬衫', '羊毛衫', '雪纺衫', '裤子', '高 跟鞋', '袜子']
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie('饼图示例')
# pie.use_theme('dark')
pie.add('服装', attr, v1, is_label_show=True)
pie.render('pie.html')

网格容器

 attr = ['衬衫', '羊毛衫', '雪纺衫', '裤子', '高 跟鞋', '袜子']
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
bar = Bar('柱状图示例', height=720)
bar.add('商家A', attr, v1, is_stack=True)
bar.add('商家B', attr, v2, is_stack=True)
line = Line('折线图示例', title_top='50%')
attr = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
line.add('最高气温',
attr,
[11, 11, 15, 13, 12, 13, 10],
mark_point=['max', 'min'],
mark_line=['average'],
)
line.add('最低气温',
attr,
[1, -2, 2, 5, 3, 2, 0],
mark_point=['max', 'min'],
mark_line=['average'],
legend_top='50%'
)
grid = Grid()
grid.add(bar, grid_bottom='60%')
grid.add(line, grid_top='60%')
grid.render('grid.html')

时间线

 attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
pie_1 = Pie("2012 年销量比例", "数据纯属虚构")
pie_1.add("秋季", attr, [random.randint(10, 100) for _ in range(6)],
is_label_show=True, radius=[30, 55], rosetype='radius') pie_2 = Pie("2013 年销量比例", "数据纯属虚构")
pie_2.add("秋季", attr, [random.randint(10, 100) for _ in range(6)],
is_label_show=True, radius=[30, 55], rosetype='radius') pie_3 = Pie("2014 年销量比例", "数据纯属虚构")
pie_3.add("秋季", attr, [random.randint(10, 100) for _ in range(6)],
is_label_show=True, radius=[30, 55], rosetype='radius') pie_4 = Pie("2015 年销量比例", "数据纯属虚构")
pie_4.add("秋季", attr, [random.randint(10, 100) for _ in range(6)],
is_label_show=True, radius=[30, 55], rosetype='radius') pie_5 = Pie("2016 年销量比例", "数据纯属虚构")
pie_5.add("秋季", attr, [random.randint(10, 100) for _ in range(6)],
is_label_show=True, radius=[30, 55], rosetype='radius') timeline = Timeline(is_auto_play=True, timeline_bottom=0)
timeline.use_theme('dark')
timeline.add(pie_1, '2012 年')
timeline.add(pie_2, '2013 年')
timeline.add(pie_3, '2014 年')
timeline.add(pie_4, '2015 年')
timeline.add(pie_5, '2016 年')
timeline.render('timeline.html')

数据分析——pyecharts的更多相关文章

  1. 小白学 Python 数据分析(20):pyecharts 概述

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  2. 小白学 Python 数据分析(21):pyecharts 好玩的图表(系列终篇)

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  3. pyecharts数据分析及展示

    仅仅从网上爬下数据当然是不够用的,主要还得对数据进行分析与展示,大部分人都看重薪资,但是薪资数据有的是*k/月,有的是*万/月,还有*万/年等等,就要对数据进行清理 将所有单位统一化,全部换算成统一单 ...

  4. 2019-06-02 Python之微信好友数据分析以及运用Pyecharts可视化

    一.库的使用说明 pass 二.微信好友信息的获取 def get_friends_info(self): #获取好像信息,返回lis列表 bot = Bot() lis = [['name', 'r ...

  5. Python数据分析实战:使用pyecharts进行数据可视化

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:刘早起 开始使用 基本套路就是先创建一个你需要的空图层,然后使用.s ...

  6. Python爬取南京市往年天气预报,使用pyecharts进行分析

    上一次分享了使用matplotlib对爬取的豆瓣书籍排行榜进行分析,但是发现python本身自带的这个绘图分析库还是有一些局限,绘图不够美观等,在网上搜索了一波,发现现在有很多的支持python的绘图 ...

  7. 【PyQt5-Qt Designer】PyQt5+pyecharts 实现GUI界面的数据可视化展示

    先用纯Python代码写一个简单的小案例: from PyQt5.QtCore import QUrl from PyQt5.QtWidgets import QApplication,QWidget ...

  8. 基于pandas python的美团某商家的评论销售数据分析(可视化)

    基于pandas python的美团某商家的评论销售数据分析 第一篇 数据初步的统计 本文是该可视化系列的第二篇 第三篇 数据中的评论数据用于自然语言处理 导入相关库 from pyecharts i ...

  9. python pandas 豆瓣电影 top250 数据分析

    豆瓣电影top250数据分析 数据来源(豆瓣电影top250) 爬虫代码比较简单 数据较为真实,可以进行初步的数据分析 可以将前面的几篇文章中的介绍的数据预处理的方法进行实践 最后用matplotli ...

随机推荐

  1. linux mint18 cinnamon 64bit 安装 docker

    参考官方文档:https://docs.docker.com/engine/installation/linux/ubuntu/ 1. 安装一些使 apt 可以使用 https 的源 sudo apt ...

  2. 最小生成树(kruskal算法)

    首先明确三个概念: 1.最小生成树的特点? 答:假设某个连通网络由n个顶点组成,则其生成树必含n个顶点和n-1条边,而最小生成树的n-1条有个要求:总和最小. 2.并查集的运用? 答:在该问题中,首先 ...

  3. renren-fast

    一开始不成功的,多半是粗心或者对这个框架不熟悉造成的. //=============== 代码生成器中这个要填好 我用了默认,但是我把它放到了 renren-fast\src\main\java\i ...

  4. C# - 设计模式目录

    什么是设计模式 设计模式(OOD)是在面向对象编程(Object Oriented Programming,OOP)中针对在以往的编程里出现的问题所提出的一种解决思路.一种设计类型时的思想和经验,对未 ...

  5. pythonのdjango 在控制台用log打印操作日志

    在Django项目的settings.py文件中,在最后复制粘贴如下代码: LOGGING = { 'version': 1, 'disable_existing_loggers': False, ' ...

  6. 搭建企业git代码版本管理所需工具

    此片文章纯属记录一下使用gitlab搭建私有git版本管理的一些工具及概念. 先记录一下概念 git         是一种版本控制系统,是一个命令,是一种工具 github   是一个基于git实现 ...

  7. 写一个python 爬虫爬取百度电影并存入mysql中

    目标是利用python爬取百度搜索的电影 在类型 地区 年代各个标签下 电影的名字 评分 和图片连接 以及 电影连接 首先我们先在mysql中建表 create table liubo4( id in ...

  8. 1、js的基本对象和垃圾回收

    js常用的基本类型:Undefined,null,string,number,boolen 还有一种复杂的数据类型 object.判断类型可以用 typeof. 确定值是否是有穷的,isFinite, ...

  9. JAVA Scanner的简单运用

    package Code428; import java.util.Scanner; /*Scanner 可以实现键盘输入数据 引用的步骤1.import 包路径.类名称只有java.lang包下的内 ...

  10. spring-第一章-基本用法

    一,简介 spring是一个开源框架 是一个非常强大的容器框架,分离项目组件之间的依赖关系,由spring容器管理整个项目的资源和配置; 通常我们可以称spring是容器大管家(项目大管家) 功能: ...