#SVM的使用

(结合具体代码说明,代码参考邹博老师的代码)

1、使用numpy中的loadtxt读入数据文件

data:鸢尾花数据

5.1,3.5,1.4,0.2,Iris-setosa

4.9,3.0,1.4,0.2,Iris-setosa

4.7,3.2,1.3,0.2,Iris-setosa

4.6,3.1,1.5,0.2,Iris-setosa

5.0,3.6,1.4,0.2,Iris-setosa

读取:

:path路径

:dtype读取类型

:delimiter分隔符

:converters- A dictionary mapping column number to a function that will parse the column string into the desired value. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also genfromtxt): ``converters = {3: lambda s: float(s.strip() or 0)}``.

:Default None.

*data

[[5.1, 3.5, 1.4, 0.2, 0. ], [4.9, 3. , 1.4, 0.2, 0. ], [4.7, 3.2, 1.3, 0.2, 0. ], [4.6, 3.1, 1.5, 0.2, 0. ],[5. , 3.6, 1.4, 0.2, 0. ]]

2、数据分训练测试集

*split用法

def split(ary,indices_or_sections,axis = 0):

'''

Split an array into multiple sub-arrays.

'''

Parameters-------------

ary : ndarray---Array to be divided into sub-arrays.

indices_or_sections---int or 1-D array  If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along `axis`. If such a split is not possible,

an error is raised.

If `indices_or_sections` is a 1-D array of sorted integers, the entries indicate where along `axis` the array is split. For example,``[2, 3]`` would, for ``axis=0``, result in

ary[:2]

ary[2:3]

ary[3:]

If an index exceeds the dimension of the array along `axis`,an empty sub-array is returned correspondingly.

axis:int,optional---The axis along which to split,default is 0.

0按列分割,1按行分割

Return:sub-array:list of ndarrays

A list of sub-arrays

example:

3、训练SVM

kernel='linear'时,为线性核,C越大分类效果越好,但有可能出现过拟合;

kernel='rbf'时,为高斯核,gamma越小,分类界面越连续;gamma越大,分类界面越分散,分类效果越好(训练集),但是有可能会过拟合。

decision_function_shape='ovr'时(one v rest),即一个类别与其他类别进行划分;

decision_function_shape='ovo'时(one v one),即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。

*准确率计算方式

机器学习--------SVM的更多相关文章

  1. 文本分类学习 (五) 机器学习SVM的前奏-特征提取(卡方检验续集)

    前言: 上一篇比较详细的介绍了卡方检验和卡方分布.这篇我们就实际操刀,找到一些训练集,正所谓纸上得来终觉浅,绝知此事要躬行.然而我在躬行的时候,发现了卡方检验对于文本分类来说应该把公式再变形一般,那样 ...

  2. 机器学习——SVM详解(标准形式,对偶形式,Kernel及Soft Margin)

    (写在前面:机器学习入行快2年了,多多少少用过一些算法,但由于敲公式太过浪费时间,所以一直搁置了开一个机器学习系列的博客.但是现在毕竟是电子化的时代,也不可能每时每刻都带着自己的记事本.如果可以掏出手 ...

  3. 程序员训练机器学习 SVM算法分享

    http://www.csdn.net/article/2012-12-28/2813275-Support-Vector-Machine 摘要:支持向量机(SVM)已经成为一种非常受欢迎的算法.本文 ...

  4. [机器学习]SVM原理

    SVM是机器学习中神一般的存在,虽然自深度学习以来有被拉下神坛的趋势,但不得不说SVM在这个领域有着举足轻重的地位.本文从Hard SVM 到 Dual Hard SVM再引进Kernel Trick ...

  5. [机器学习] SVM——Hinge与Kernel

    Support Vector Machine [学习.内化]--讲出来才是真的听懂了,分享在这里也给后面的小伙伴点帮助. learn from: https://www.youtube.com/wat ...

  6. 小刘的机器学习---SVM

    前言: 这是一篇记录小刘学习机器学习过程的随笔. 正文: 支持向量机(SVM)是一组用于分类, 回归和异常值检测的监督学习方法. 在分类问题中,SVM就是要找到一个同时离各个类别尽可能远的决策边界即最 ...

  7. 机器学习—SVM

    一.原理部分: 依然是图片~ 二.sklearn实现: import pandas as pd import numpy as np import matplotlib.pyplot as plt i ...

  8. 机器学习——SVM讲解

    支持向量机(Support Vector Machine) SVM是一类按监督学习方式对数据进行二元分类的广义线性分类器,决策边界是对学习样本求解的最大边距超平面.只需要知道,SVM是一个有监督的分类 ...

  9. 机器学习——SVM

    整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 带核的SVM为什么能分 ...

随机推荐

  1. Java Socket 服务端发送数据 客户端接收数据

    服务端: package com.thinkgem.wlw.modules.api.test.socket; /** * @Author: zhouhe * @Date: 2019/4/8 9:30 ...

  2. 【题解】狼抓兔子—BZOJ1001。

    (胡扯时间)今天炒鸡无聊就打算BZOJ开始从第一道题开始顺着打,这样未来一段时间内也就有事干了.结果发现A+B切掉后就遭遇了一个"小小"的瓶颈(真不友好. 好了说题说题.看题第一眼 ...

  3. Moment.js简单使用

    1.设置语言环境,如设置中文环境: moment.locale("zh-cn"); 2.当前时间.指定时间: // 假设当前时间为:2018年12月10日 moment(); // ...

  4. pythonのdjango 缓存

    由于Django是动态网站,所有每次请求均会去数据进行相应的操作,当程序访问量大时,耗时必然会更加明显,最简单解决方式是使用:缓存,缓存将一个某个views的返回值保存至内存或者memcache中,5 ...

  5. 2018-2019-2 网络对抗技术 20165325 Exp2 后门原理与实践

    2018-2019-2 网络对抗技术 20165325 Exp2 后门原理与实践 实验内容(概要): (1)使用netcat获取主机Shell,cron启动 首先两个电脑(虚拟机)都得有netcat, ...

  6. Java 多线程 - Java对象头, Monitor

    详见: http://www.cnblogs.com/pureEve/p/6421273.html

  7. 04mycat数据切分

    自定义切分文件 [root@mycat mycat]# cat conf/customer-hash-int.txt 101=0 102=0 103=0 104=1 105=1 106=1 Rule. ...

  8. 记一次简单的PHP代码审计(SSRF案例)

    题目链接: http://oj.momomoxiaoxi.com:9090/ 用dirsearch对网址进行扫描,发现robots.txt 命令行: python3 dirsearch.py -u & ...

  9. [Linux]fcntl函数文件锁概述

    概述 fcntl函数文件锁有几个比较容易忽视的地方: 1.文件锁是真的进程之间而言的,调用进程绝对不会被自己创建的锁锁住,因为F_SETLK和F_SETLKW命令总是替换调用进程现有的锁(若已存在), ...

  10. javascript封装函数入门

    封装函数的入门 一.使用函数有两步: 1.定义函数,又叫声明函数, 封装函数. 定义函数的三个要素:功能,参数,返回值. function 函数名(形参){ 函数代码 return 结果} //2.调 ...