level 1

1.1题目

1.1.1题目描述

考虑在下面被显示的数字金字塔。 写一个程序来计算从最高点开始在底部任意处结束的路径经过数字的和的最大。每一步可以走到左下方的点也可以到达右下方的点。



在上面的样例中,从7 到 3 到 8 到 7 到 5 的路径产生了最大和:30

1.1.2输入

第1行:1个整数R(1<= R<=1000),表示行的数目。

接下来共R行,第i行有i个整数。所有的数均非负的且不大于100。

1.1.3输出

第1行:可以得到的最大的和。

1.1.4样例输入

5

7

3 8

8 1 0

2 7 4 4

4 5 2 6 5

1.1.5样例输出

30

1.1.6提示

这种题都要给你提示?

1.2分析

一道水的不能再水的 DP基础题…但是这么简单的题还是难道了蒟蒻的我…

1.2.1超时的搜索

嗯…是的,做这道题的时候我还不知道有DP这种东西…于是上场直接搜索:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,maxx,a[1005][1005];
void dfs(int x,int y,int sum)
{
    if(x>n){maxx=max(maxx,sum);return ;}
    dfs(x+1,y,sum+a[x][y]);
    dfs(x+1,y+1,sum+a[x][y]);
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=i;j++)scanf("%d",&a[i][j]);
    dfs(1,1,0);
    printf("%d",maxx);
}

然后…

于是瞬间蒙蔽…

1.2.2DP大法出现

两个月后~~

听说这题是用DP才能过的,于是马上自学了部分DP知识,瞬间懂了…

我们可以设f[i][j]" role="presentation" style="position: relative;">f[i][j]f[i][j]为顶向上到此点的最大值,可以列出转移方程

f[i][j]=max(f[i−1][j],f[i−1][j−1])" role="presentation" style="position: relative;">f[i][j]=max(f[i−1][j],f[i−1][j−1])f[i][j]=max(f[i−1][j],f[i−1][j−1])

答案即在f[n][i]" role="presentation" style="position: relative;">f[n][i]f[n][i]中的最大值上.

实现:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int n,a[3][1005][1005],maxx,head;
int main()
{
    scanf("%d",&n);
    memset(a,0,sizeof(a));
    for(int i=1;i<=n;i++)
        for(int j=1;j<=i;j++)
        scanf("%d",&a[1][i][j]);
    a[2][1][1]=a[1][1][1];
    for(int i=2;i<=n;i++)
        for(int j=1;j<=i;j++)
        {
            a[2][i][j]=a[1][i][j]+max(a[2][i-1][j-1],a[2][i-1][j]);
        }
    for(int i=1;i<=n;i++)
    {
        maxx=max(maxx,a[2][n][i]);
    }
    printf("%d",maxx);
    //print(head);
}

level 2

2.1题目

2.1.1题目描述

2.1.2输入

第1行:1个整数N,表示数字三角形的行数和列数(1 <= N <= 1000)

接下来N行,第i行有i个整数,表示数字三角形

2.1.3输出

第1行:1个整数,表示问题的最优解

2.1.4样例输入

5

1

3 6

9 9 1

5 5 2 3

2 9 7 6 1

2.1.5样例输出

30

2.1.5提示

看清楚题就很简单的QAQ

2.2分析

考试的时候看见数字三角形太兴奋以至于没法现题目改了(这数据也太坑了吧233…)

额,貌似多加了一个最多一次走到任意格子上呀…..

其实我们可以再定义一个数组q[i][j]表示使用一次机会从下到上后走到(i,j)时的最大花费,我们定义MAX_NUM为i行f数组的最大值

因此q[i][j]=max(MAX_NUM,max(q[i+1][j],q[i+1][j+1]))

注意,一定是f的最大值,因为需要保证只使用一次机会。

2.3实现

#include<bits/stdc++.h>//作死头文件专场
using namespace std;
int a[1005][1005],n,f[1005][1005],q[1005][1005];
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=i;j++)
        {
            scanf("%d",&a[i][j]);
            f[i][j]=a[i][j];
            q[i][j]=a[i][j];
        }
    for(int i=n-1;i>=1;i--)
    {
        int maxx=0,qx=0;
        for(int j=1;j<=i+1;j++)
        if(maxx<f[i+1][j])
            maxx=f[i+1][j];
        for(int j=1;j<=i;j++)
        {
            f[i][j]=max(f[i+1][j],f[i+1][j+1])+a[i][j];
            q[i][j]=max(maxx,max(q[i+1][j],q[i+1][j+1]))+a[i][j];
        }
    }
    printf("%d",max(f[1][1],q[1][1]));
}

level 3(制作中)

3.1题目

3.1.1题目描述

3.1.2输入

第1行:1个整数N,表示数字三角形的行数和列数(1 <= N <= 1000)

接下来N行,第i行有i个整数,表示数字三角形

3.1.3输出

第1行:1个整数,表示问题的最优解

3.1.4样例输入

5

0

0 1

0 1 0

1 0 0 0

0 0 0 1 0

3.1.5样例输出

3

2.1.6提示

仔细思考一下就能做出来的QAQ

3.2分析

填充中…

3.3代码实现

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
bool f[1005][1005][10];
int a[1005][1005],n;
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=i;j++)
        scanf("%d",&a[i][j]),a[i][j]%=10;
    for(int i=1;i<=n;i++)f[n][i][a[n][i]]=1;
    for(int i=n-1;i>=1;i--)
        for(int j=1;j<=i;j++)
            for(int k=0;k<=9;k++)
                if(f[i+1][j][k]||f[i+1][j+1][k])
                    f[i][j][(k+a[i][j])%10]=1;
    int ans=0;
    for(int i=9;i>=0;i--)if(f[1][1][i]){ans=i;break;}
    printf("%d",ans);
}

[动态规划]数字三角形(版本I-III)的更多相关文章

  1. 动态规划——数字三角形(递归or递推or记忆化搜索)

    动态规划的核心就是状态和状态转移方程. 对于该题,需要用抽象的方法思考,把当前的位置(i,j)看成一个状态,然后定义状态的指标函数d(i,j)为从格子出发时能得到的最大和(包括格子本身的值). 在这个 ...

  2. Poj3176 Cow Bowling (动态规划 数字三角形)

    Description The cows don't use actual bowling balls when they go bowling. They each take a number (i ...

  3. [ACM_动态规划] 数字三角形(数塔)_递推_记忆化搜索

    1.直接用递归函数计算状态转移方程,效率十分低下,可以考虑用递推方法,其实就是“正着推导,逆着计算” #include<iostream> #include<algorithm> ...

  4. [ACM_动态规划] 数字三角形(数塔)

    递归方法解决数塔问题 状态转移方程:d[i][j]=a[i][j]+max{d[i+1][j],d[i+1][j+1]} 注意:1\d[i][j]表示从i,j出发的最大总和;2\变界值设为0;3\递归 ...

  5. 动态规划略有所得 数字三角形(POJ1163)

    在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大.路径上的每一步都只能往左下或 右下走.只需要求出这个最大和即可,不必给出具体路径. 三角形的行数大于1小于等于100,数 ...

  6. hihoCoder #1037 : 数字三角形 (动态规划)

    题目链接:https://hihocoder.com/problemset/problem/1037# 问题描述 小Hi和小Ho在经历了螃蟹先生的任务之后被奖励了一次出国旅游的机会,于是他们来到了大洋 ...

  7. 动态规划入门——数字三角形(Java)

    动态规划的概念对于新手来说枯燥难懂,就算看懂了,做题的时候依旧抓耳挠腮的毫无头绪,这些比较难理解的算法,还是需要根据例子来一步步学习和理解,从而熟练掌握,下面,咱们就通过一个简单的小例子来学习动态规划 ...

  8. Problem C: 动态规划基础题目之数字三角形

    Problem C: 动态规划基础题目之数字三角形 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 208  Solved: 139[Submit][Sta ...

  9. 动态规划之数字三角形(POJ1163)

    在下面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大.路径上的每一步都只能往左下或 右下走.只需要求出这个最大和即可,不必给出具体路径. 既然求目标问题是根据查表得来的,自然 ...

随机推荐

  1. 作用域和闭包(二)this

    this 要在执行时才确认,定义时无法确认 1. 作为构造函数执行 2. 作为对象属性执行 3.作为普通函数执行 4. call,apply,bind 改变this

  2. 关于ajax 返回值验证问题

    如果后台返回布尔值true时 前端 if(data==true){    //true 不能加引号  否则就变成了字符串了 alert(data+'操作成功!'+status); }

  3. 面试中遇到的原生js题总结

    最近面试,遇到很多js相关的面试题,总结一下. 1.js 去重 1) indexOf Array.prototype.unique = function(){ var result = []; var ...

  4. js之promise讲解

    1 Promise概述 Promise对象是CommonJS工作组提出的一种规范,目的是为异步操作提供统一接口. 那么,什么是Promises? 首先,它是一个对象,也就是说与其他JavaScript ...

  5. node环境配置

    1.进入node的官网https://nodejs.org/en/download/ 2.选择自己需要的安装包 3.下载之后,直接安装http://www.runoob.com/nodejs/node ...

  6. angular.isDate()

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  7. angular.injector()

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. HTML5_canvas_像素操作_图片马赛克_图片反相

    canvas 像素操作 像素,即像素点,一个像素只有一个颜色 100*100 的 px 的屏幕区域有 100*100*4 个像素点,即 width*height*4 rgba(0, 0, 0, 1); ...

  9. __x__(27)0907第四天__ float 浮动

     float 浮动 块元素脱离文档流,水平排列. 浮动元素 会尽量往左上(left),或者右上(right)浮动,直到遇到 块元素 或者 其他浮动元素. 可选值: none;   默认值,不脱离文档流 ...

  10. 使用ffmpeg进行视频截图

    1.从ffmpeg的Windows Build网站(https://ffmpeg.zeranoe.com/builds/)下载ffmpeg. 2.下载后解压压缩包,得到如下左图的文件.然后打开bin文 ...