4.2模拟赛 wormhole(期望DP Dijkstra)
\(\color{white}{orzmjt又切题了...}\)
\(Description\)
给定一张有向图,每条边在每一时刻有\(p_i\)的概率存在。求最优策略下从\(1\)走到\(n\)最少需要多长时间。
\(n,m\leq10^5\)。
\(Solution\)
在八十中做过一道类似的题...(我都想不起那题是哪的了还是mjt想起来的orz)
令\(f_x\)表示\(x\)点到\(n\)点最少的期望花费时间。对比样例解释可以猜出能够想到,假设最优解中转移到\(x\)的点是\(v_1,v_2,...,v_k\),且这些点是按\(f_{v_i}\)从小到大排好序的,那么有$$f_x=p_{(x,v_1)}f_{v_1}+(1-p_{(x,v1)})p_{(x,v2)}f_{v_2}+...+\prod_{i=1}^k(1-p_{(x,v_i)})f_x$$
用\(Dijkstra\)转移就可以了(每次出队的一定已经是最优的\(f_v\),且是从小到大的。如果\(f_v\)能使\(f_x\)变小,就要\(v\),否则不管)。
考试的时候没判\(vis\),有双向边然后\(f[x]\)重复转移了 丢了一堆分mdzz。。
#include <queue>
#include <cstdio>
#include <cctype>
#include <algorithm>
#define mp std::make_pair
#define pr std::pair<double,int>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5;
int Enum,H[N],nxt[N],to[N];
double P[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(double w,int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, P[Enum]=w/100.0;
}
void Dijkstra(int n,int m)
{
static double f[N],sp[N];
static bool vis[N];
std::priority_queue<pr> q;
f[n]=0, q.push(mp(0,n));
for(int i=1; i<=n; ++i) sp[i]=1;
while(!q.empty())
{
int x=q.top().second; q.pop();
if(vis[x]) continue;
vis[x]=1;
if(x!=n) f[x]=(f[x]+1)/(1-sp[x]);
for(int i=H[x]; i; i=nxt[i])
{
int v=to[i]; if(vis[v]) continue;
double tmp=(f[v]+f[x]*sp[v]*P[i])/(1-sp[v]*(1-P[i]));
if(sp[v]==1||(f[v]+1)/(1-sp[v])>tmp) f[v]+=f[x]*sp[v]*P[i], sp[v]*=(1-P[i]), q.push(mp(-(f[v]+1)/(1-sp[v]),v));
}
}
printf("%.3f\n",f[1]);
}
int main()
{
freopen("wormhole.in","r",stdin);
freopen("wormhole.out","w",stdout);
int n=read(),m=read();
for(int i=1; i<=m; ++i) AE(read(),read(),read());
Dijkstra(n,m);
return 0;
}
4.2模拟赛 wormhole(期望DP Dijkstra)的更多相关文章
- 7.12 NOI模拟赛 探险队 期望 博弈 dp 最坏情况下最优策略 可并堆
LINK:探险队 非常难的题目 考试的时候爆零了 完全没有想到到到底怎么做 (当时去刚一道数论题了. 首先考虑清楚一件事情 就是当前是知道整张地图的样子 但是不清楚到底哪条边断了. 所以我们要做的其实 ...
- 6.3 省选模拟赛 Decompose 动态dp 树链剖分 set
LINK:Decompose 看起来很难 实际上也很难 考验选手的dp 树链剖分 矩阵乘法的能力. 容易列出dp方程 暴力dp 期望得分28. 对于链的情况 容易发现dp方程可以转矩阵乘法 然后利用线 ...
- 4.13 省选模拟赛 树 树形dp 卷积 NTT优化dp.
考试的时候 看到概率 看到期望我就怂 推了一波矩阵树推自闭了 发现 边权点权的什么也不是. 想到了树形dp 维护所有边的断开情况 然后发现数联通块的和再k次方过于困难. 这个时候 应该仔细观察一下 和 ...
- Newnode's NOI(P?)模拟赛 第二题 dp决策单调优化
其实直接暴力O(n3)DP+O2O(n^3)DP+O_2O(n3)DP+O2优化能过- CODE O(n3)O(n^3)O(n3) 先来个O(n3)O(n^3)O(n3)暴力DP(开了O2O_2O2 ...
- 7.11 NOI模拟赛 graph 生成函数 dp 多项式
LINK:graph HDU题库里的原题 没做过自闭. 考虑dp 设\(f_{i,j}\)表示前i个点构成j个联通块是树的方案数. 对于一次询问答案即为\(\sum_{j}f_{n,j}j^k\) 考 ...
- 5.10 省选模拟赛 拍卖 博弈 dp
LINK:拍卖 比赛的时候 前面时间浪费的有点多 写这道题的时候 没剩多少时间了. 随便设了一个状态 就开始做了. 果然需要认真的思考.其实 从我的状态的状态转移中可以看出所有的结论. 这里 就不再赘 ...
- 5.12 省选模拟赛 T2 贪心 dp 搜索 差分
LINK:T2 这题感觉很套路 但是不会写. 区间操作 显然直接使用dp不太行 直接爆搜也不太行复杂度太高. 容易想到差分 由于使得整个序列都为0 那么第一个数也要i差分前一个数 强行加一个0 然后 ...
- 5.10 省选模拟赛 tree 树形dp 逆元
LINK:tree 整场比赛看起来最不可做 确是最简单的题目. 感觉很难写 不过单独考虑某个点 容易想到树形dp的状态. 设f[x]表示以x为根的子树内有黑边的方案数. 白边方案只有一种所以不用记录. ...
- 4.3 省选模拟赛 序列游戏 dp
可以发现 某一段被删除后状态难以表示 也难以链接起来. 考虑暴力 有40分的状压dp 暴力存状态 然后枚举转移即可.最后注意和f[0]这个状态取max 不然一分都没有. const int MAXN= ...
随机推荐
- [HNOI2016]矿区
[HNOI2016]矿区 平面图转对偶图 方法: 1.分成正反两个单向边,每个边属于一个面 2.每个点按照极角序sort出边 3.枚举每一个边,这个边的nxt就是反边的前一个(这样找到的是面的边逆时针 ...
- tty
tty一词源于Teletypes,或teletypewriters,原来指的是电传打字机,是通过串行线用打印机键盘通过阅读和发送信息的东西,后来这东西被键盘和显示器取代,所以现在叫终端比较合适. 终端 ...
- 微信小程序之canvas 文字断行和省略号显示
文字的多行处理在dom元素中很好办.但是canvas中没有提供方法,只有通过截取指定字符串来达到目的. 那么下面就介绍我自己处理的办法: wxml: <canvas canvas-id='wor ...
- 缓存服务—Redis
Redis 简介Redis 是一个开源(BSD 许可)的.内存中的数据结构存储系统,它可以用作数据库.缓存和消息中间件. 为什么要用 Redis 在高并发场景下,如果需要经常连接结果变动频繁的数据库, ...
- Docker:单机编排工具docker-compose [十二]
一.docker-compose的安装 1.安装 curl -o /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.re ...
- jvisualvm安装visualgc插件
jdk1.7自带jvisualvm可以对java应用进行监控.其中有个插件visualgc可以查看jvm垃圾回收的具体信息.安装插件的步骤是打开jvisualvm,点击工具->插件,在可用插件列 ...
- NOI-OJ 2.2 ID:6261 汉诺塔
思路 汉诺塔是递归思想最经典的例子,通过递归不断缩小问题,将n个盘子的问题简化n-1个,直至1个. 三个盘子,分别为A:from,B:to,C:by(A为起点盘,B为目标盘,C为中转盘) 过程 将1- ...
- 如何在IntelliJ IDEA中使用.ignore插件忽略不必要提交的文件
如何在IntelliJ IDEA中使用.ignore插件忽略不必要提交的文件 最近初学Git,而且在使用的IDE是IntelliJ IDEA,发现IDEA在提交项目到本地仓库的时候,会把.idea文件 ...
- Beamer中左边画图, 右边文字解释
\begin{columns} \column{.4\textwidth} \begin{figure} \centering % Requires \usepackage{graphicx} \in ...
- selenium新手常遇到的坑
本文是以Chrome为例: 1.Chrome相对应的chromedriver的版本信息[点击浏览器的右上角的浏览器信息--------帮助-------关于Google Chrome查看相对应的信息- ...