Codeforces 1109E. Sasha and a Very Easy Test 线段树
原文链接https://www.cnblogs.com/zhouzhendong/p/CF1109E.html
题意
给定一个长度为 n 的数列 a,以及一个模数 M(不一定是质数)。
要求支持 q 次以下操作:
区间乘
单点除(保证能够整除)
区间求和,最终结果对 M 取模输出。
$$n,q\leq 10^5$$
题解
这里我们设 $f(x)$ 表示 $\frac x {\gcd(x,M)}$ 。
令 $c(x,i)$ 表示 x 最多能够整除 M 的第 $i$ 个质因子的 $c(x,i)$ 次方。
线段树维护一下单点 $f(x)$ 值,以及所有单点 $c(x,i)$;再维护一下所有区间和就好了。
暴写一通,注意取模。这题为什么会放E……
代码
#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
using namespace std;
typedef long long LL;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=100005;
int n,mod,phi;
int a[N];
vector <int> fenjie(int n){
static vector <int> ans;
ans.clear();
for (int i=2;i*i<=n;i++)
while (n%i==0)
n/=i,ans.push_back(i);
if (n>1)
ans.push_back(n);
return ans;
}
void Unique(vector <int> &v){
sort(v.begin(),v.end());
int u=unique(v.begin(),v.end())-v.begin();
while (v.size()>u)
v.pop_back();
}
int Phi(int n){
int ans=n;
for (int i=2;i*i<=n;i++)
if (n%i==0){
ans=ans/i*(i-1);
while (n%i==0)
n/=i;
}
if (n>1)
ans=ans/n*(n-1);
return ans;
}
int Pow(int x,int y,int mod=::mod){
int ans=1;
for (;y;y>>=1,x=(LL)x*x%mod)
if (y&1)
ans=(LL)ans*x%mod;
return ans;
}
int Inv(int x){
return Pow(x,phi-1);
}
vector <int> pm;
const int S=40;
int pcnt;
int ti[N<<2][S],val[N<<2],add[N<<2],nad[N<<2];
void pushdown(int rt){
int ls=rt<<1,rs=ls|1;
for (int i=1;i<=pcnt;i++){
ti[ls][i]+=ti[rt][i];
ti[rs][i]+=ti[rt][i];
ti[rt][i]=0;
}
val[ls]=(LL)val[ls]*add[rt]%mod;
val[rs]=(LL)val[rs]*add[rt]%mod;
add[ls]=(LL)add[ls]*add[rt]%mod;
add[rs]=(LL)add[rs]*add[rt]%mod;
add[rt]=1;
nad[ls]=(LL)nad[ls]*nad[rt]%mod;
nad[rs]=(LL)nad[rs]*nad[rt]%mod;
nad[rt]=1;
}
void pushup(int rt){
val[rt]=(val[rt<<1]+val[rt<<1|1])%mod;
}
void Get(int v,int &ans,int *c){
for (int i=1;i<=pcnt;i++)
while (v%pm[i-1]==0)
v/=pm[i-1],c[i]++;
ans=v%mod;
}
void build(int rt,int L,int R){
add[rt]=nad[rt]=1,clr(ti[rt]);
if (L==R){
val[rt]=a[L]%mod;
Get(a[L],nad[rt],ti[rt]);
return;
}
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
build(ls,L,mid);
build(rs,mid+1,R);
pushup(rt);
}
void update1(int rt,int L,int R,int xL,int xR,int v,int *d,int nv){
if (R<xL||L>xR)
return;
if (xL<=L&&R<=xR){
for (int i=1;i<=pcnt;i++)
ti[rt][i]+=d[i];
val[rt]=(LL)val[rt]*v%mod;
add[rt]=(LL)add[rt]*v%mod;
nad[rt]=(LL)nad[rt]*nv%mod;
return;
}
pushdown(rt);
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
update1(ls,L,mid,xL,xR,v,d,nv);
update1(rs,mid+1,R,xL,xR,v,d,nv);
pushup(rt);
}
int Calc(int v,int *c){
for (int i=1;i<=pcnt;i++)
v=(LL)v*Pow(pm[i-1],c[i])%mod;
return v;
}
void update2(int rt,int L,int R,int x,int v,int *d,int nv){
if (L==R){
nad[rt]=(LL)nad[rt]*Inv(nv)%mod;
for (int i=1;i<=pcnt;i++)
ti[rt][i]-=d[i];
val[rt]=Calc(nad[rt],ti[rt]);
return;
}
pushdown(rt);
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
if (x<=mid)
update2(ls,L,mid,x,v,d,nv);
else
update2(rs,mid+1,R,x,v,d,nv);
pushup(rt);
}
int Query(int rt,int L,int R,int xL,int xR){
if (R<xL||L>xR)
return 0;
if (xL<=L&&R<=xR)
return val[rt];
pushdown(rt);
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
return (Query(ls,L,mid,xL,xR)+Query(rs,mid+1,R,xL,xR))%mod;
}
int main(){
n=read(),mod=read(),phi=Phi(mod);
for (int i=1;i<=n;i++)
a[i]=read();
pm=fenjie(mod);
Unique(pm);
pcnt=pm.size();
build(1,1,n);
int q=read();
while (q--){
static int cc[S];
int type=read(),a=read(),b=read();
clr(cc);
if (type==1){
int x=read(),v;
Get(x,v,cc);
update1(1,1,n,a,b,x,cc,v);
}
else if (type==2){
int v;
Get(b,v,cc);
update2(1,1,n,a,b,cc,v);
}
else {
printf("%d\n",Query(1,1,n,a,b));
}
}
return 0;
}
Codeforces 1109E. Sasha and a Very Easy Test 线段树的更多相关文章
- CodeForces 1109E. Sasha and a Very Easy Test
题目简述:给定$m \leq 10^9+9$,维护以下操作 1. "1 l r x":将序列$a[l], a[l+1], \dots, a[r]$都乘上$x$. 2. " ...
- Codeforces Round #539 (Div. 1) E - Sasha and a Very Easy Test 线段树
如果mod是质数就好做了,但是做除法的时候对于合数mod可能没有逆元.所以就只有存一下mod的每个质因数(最多9个)的幂,和剩下一坨与mod互质的一部分.然后就能做了.有点恶心. CODE #incl ...
- [Codeforces 464E] The Classic Problem(可持久化线段树)
[Codeforces 464E] The Classic Problem(可持久化线段树) 题面 给出一个带权无向图,每条边的边权是\(2^{x_i}(x_i<10^5)\),求s到t的最短路 ...
- Codeforces Round #373 (Div. 2) E. Sasha and Array 矩阵快速幂+线段树
E. Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes input standard ...
- Educational Codeforces Round 6 E. New Year Tree dfs+线段树
题目链接:http://codeforces.com/contest/620/problem/E E. New Year Tree time limit per test 3 seconds memo ...
- Codeforces Round #244 (Div. 2) B. Prison Transfer 线段树rmq
B. Prison Transfer Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/pro ...
- HDU 5475 An easy problem 线段树
An easy problem Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pi ...
- codeforces 893F - Physical Education Lessons 动态开点线段树合并
https://codeforces.com/contest/893/problem/F 题意: 给一个有根树, 多次查询,每次查询对于$x$i点的子树中,距离$x$小于等于$k$的所有点中权值最小的 ...
- Codeforces Round #530 (Div. 2) F (树形dp+线段树)
F. Cookies 链接:http://codeforces.com/contest/1099/problem/F 题意: 给你一棵树,树上有n个节点,每个节点上有ai块饼干,在这个节点上的每块饼干 ...
随机推荐
- sql 找出不包含字母、不包含汉字的数据
--1.不包含字母 SELECT * FROM t WHERE str NOT LIKE '%[a-zA-Z]%' SELECT * FROM t --2.不包含汉字 SELECT * FROM t ...
- Zabbix配置邮件监控
zabbix服务端配置 安装软件并配置 使用第三方邮件实现报警 1. 安装软件 $ yum -y install mailx 2. 配置发送邮件账号密码和服务器 $ vim /etc/mail.rc ...
- 【ARC101F】Robots and Exits 树状数组
题目大意 有 \(n\) 个机器人和 \(m\) 个出口. 这 \(n\) 个机器人的初始位置是 \(a_1,a_2,\ldots,a_n\),这 \(m\) 个出口的位置是 \(b_1,b_2,\l ...
- 【XSY3141】哲学家 计算几何 线段树
题目描述 有一个平面,最开始平面上没有任何点. 你要按顺序加入 \(n\) 个点,求加入每个点后有多少三角形严格包含原点(在边界上不算). \(n\leq 400000\),无重点. 题解 其实这题本 ...
- Souvenir Shop 解题报告
Souvenir Shop 魔幻题目,这谁搞得到啊... 考场上完全sb了写了个线段树合并,想必我是个复杂度分析都没学过的入门级选手 发现这个网格图dag它的出度最多只有2 如果按照先走朝上的一条边进 ...
- [SCOI2015]小凸想跑步
题目描述 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 n 边形, nn 个顶点按照逆时针从 0 ∼n−1 编号.现在小凸随机站在操场中的某个位置,标记为p点.将 p ...
- 这可能是最为详细的Docker入门吐血总结
这可能是最为详细的Docker入门吐血总结 https://www.cnblogs.com/ECJTUACM-873284962/p/9789130.html Docker是什么? 在计算机技术日新 ...
- Hack The Box 获取邀请码
TL DR; 使用curl请求下面的地址 curl -X POST https://www.hackthebox.eu/api/invite/generate {"success" ...
- 分布式监控系统开发【day38】:报警阈值程序逻辑解析(三)
一.需求讨论 1.请问如何解决延迟问题 1000台机器,每1分钟循环一次但是刚好第一次循环第一秒刚处理完了,结果还没等到第二分钟又出问题,你那必须等到第二次循环,假如我这个服务很重要必须实时知道,每次 ...
- CentOS7部署Dotnet Core2.1
前言 笔者在毫无Linux部署.net core的经验下,第一次用了15分钟完成部署,第二次在生产环境用了5分钟.下文将说明如何在CentOS7下完成.NetCore2.1的部署,包括如何创建ASP. ...