C#版 - HDUoj 5391 - Zball in Tina Town(素数) - 题解
版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址
http://blog.csdn.net/lzuacm。
HDUoj 5391 - Zball in Tina Town
在线提交:
http://acm.hdu.edu.cn/showproblem.php?pid=5391
Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 2790 Accepted Submission(s): 1309
题目大意:
Tina Town 是一个善良友好的地方, 这里的每一个人都互相关心。
Tina有一个球,它的名字叫zball。zball很神奇,它每天会变大一些。在第一天,它和原始大小一样。 在第二天,它的大小将成为第一天的2倍。 在第n天,它的大小将为第(n-1)天大小的n倍。Tina想知道,zball在第n-1天时的大小对n取模是多少呢?
思路:
陶哲轩在他的书Solving mathematical problems 中提到威尔逊定理(n−1)!+1 (mod n)≡0⇔n" role="presentation" style="position: relative;">(n−1)!+1 (mod n)≡0⇔n(n−1)!+1 (mod n)≡0⇔n is prime.
首先,来回忆一下阶乘的定义:
m!=∏k=1mk=1×2×3×⋯×m." role="presentation" style="position: relative;">m!=∏mk=1k=1×2×3×⋯×m.m!=∏k=1mk=1×2×3×⋯×m.
可得出结论: 存在a, b ∈" role="presentation" style="position: relative;">∈∈ [1, m] 使得a⋅b" role="presentation" style="position: relative;">a⋅ba⋅b能整除m!
假定 m=n−1" role="presentation" style="position: relative;">m=n−1m=n−1,
原问题可分类如下:
- n是质数,则由威尔逊定理知:
(n−1)! (mod n)=−1(mod n)=n−1" role="presentation" style="position: relative;">(n−1)! (mod n)=−1(mod n)=n−1(n−1)! (mod n)=−1(mod n)=n−1. n是合数(composite),且n不能表示为质数的平方,则∃a,b" role="presentation" style="position: relative;">∃a,b∃a,b使得n=a⋅b | m!" role="presentation" style="position: relative;">n=a⋅b | m!n=a⋅b | m!,即
a⋅b=n | (n−1)!" role="presentation" style="position: relative;">a⋅b=n | (n−1)!a⋅b=n | (n−1)!n是合数,且n可表示成质数p的平方,而且 p > 2+1" role="presentation" style="position: relative;">2–√+12+1, 即 p≥3" role="presentation" style="position: relative;">p≥3p≥3
此时的目标是寻找a, b使得 a⋅b | p2" role="presentation" style="position: relative;">a⋅b | p2a⋅b | p2,不妨假设 a = k1⋅p" role="presentation" style="position: relative;">k1⋅pk1⋅p, b = k2⋅p" role="presentation" style="position: relative;">k2⋅pk2⋅p.
n=p2" role="presentation" style="position: relative;">n=p2n=p2, 则n的约数有1,p,p2" role="presentation" style="position: relative;">1,p,p21,p,p2.
下面用反证法来证明为何a、b均与p线性相关,如果a(≥1" role="presentation" style="position: relative;">≥1≥1)与p线性无关,则b=k⋅p2≥p2(k≥1)" role="presentation" style="position: relative;">b=k⋅p2≥p2(k≥1)b=k⋅p2≥p2(k≥1),而b≤m=n−1=p2−1" role="presentation" style="position: relative;">b≤m=n−1=p2−1b≤m=n−1=p2−1,矛盾。同理假设b与p线性无关也会出现同样的矛盾,因此a、b均与p线性相关。1≤a=k1⋅p<b=k2⋅p≤p2−1" role="presentation" style="position: relative;">1≤a=k1⋅p<b=k2⋅p≤p2−11≤a=k1⋅p<b=k2⋅p≤p2−1
让a尽量小, 则k1=1" role="presentation" style="position: relative;">k1=1k1=1, 令t=k2" role="presentation" style="position: relative;">t=k2t=k2, 于是b可表示为t⋅p" role="presentation" style="position: relative;">t⋅pt⋅p.
∴t⋅p≤p2−1" role="presentation" style="position: relative;">∴t⋅p≤p2−1∴t⋅p≤p2−1
解上述不等式可得 p≥t+t2+42=f(t) (t≥2)" role="presentation" style="position: relative;">p≥t+t2+4√2=f(t) (t≥2)p≥t+t2+42=f(t) (t≥2), 容易分析得f(t)是递增函数。
当t=2" role="presentation" style="position: relative;">t=2t=2时, p≥2+1" role="presentation" style="position: relative;">p≥2–√+1p≥2+1,即p∈[2+1,+∞)" role="presentation" style="position: relative;">p∈[2–√+1,+∞)p∈[2+1,+∞), 于是b=2⋅p" role="presentation" style="position: relative;">b=2⋅pb=2⋅p.
而当t>2" role="presentation" style="position: relative;">t>2t>2时,p的解集是上述区间的子集, 因此p的解集可取两者中范围较大者, 即[2+1,+∞)" role="presentation" style="position: relative;">[2–√+1,+∞)[2+1,+∞)。
由于p≥2+1" role="presentation" style="position: relative;">p≥2–√+1p≥2+1, 而 p∈Z" role="presentation" style="position: relative;">p∈Zp∈Z, 因而p≥3" role="presentation" style="position: relative;">p≥3p≥3.
因此
a⋅b=2⋅p2=2⋅n|(n−1)!" role="presentation" style="position: relative;">a⋅b=2⋅p2=2⋅n|(n−1)!a⋅b=2⋅p2=2⋅n|(n−1)!
故 (n-1)! (mod n) = 0n是合数,且n可表示成质数p的平方,而且 p < 2+1" role="presentation" style="position: relative;">2–√+12+1, 即 p = 2, n=4.
此时,无法找到满足条件的a和b,4∤3!=6" role="presentation" style="position: relative;">4∤3!=64∤3!=6.
已AC代码:
using System;
namespace hdoj_zball
{
public class Solution
{
public int Mod(int n)
{
if (IsPrime(n))
return n - 1;
if (n == 4)
return 2;
return 0;
}
public bool IsPrime(int m)
{
if (m < 2)
return false;
for (int i = 2; i * i <= m; i++)
{
if (m % i == 0)
return false;
}
return true;
}
}
class Program
{
static void Main(string[] args)
{
int n = int.Parse(Console.ReadLine());
while (n-- > 0)
{
string[] s = Console.ReadLine().Split();
int num = int.Parse(s[0]);
Solution sol = new Solution();
Console.WriteLine(sol.Mod(num));
}
}
}
}
Rank (C#):
| Exe.Time | Exe.Memory |
|---|---|
| 1185ms | 26908K |
Reference:
elementary number theory - If n≠4" role="presentation" style="position: relative;">n≠4n≠4 is composite, then n" role="presentation" style="position: relative;">nn divides (n−1)!" role="presentation" style="position: relative;">(n−1)!(n−1)!. - Mathematics Stack Exchange
https://math.stackexchange.com/questions/164852/if-n-ne-4-is-composite-then-n-divides-n-1
C#版 - HDUoj 5391 - Zball in Tina Town(素数) - 题解的更多相关文章
- (hdu)5391 Zball in Tina Town
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5391 Problem Description Tina Town is a friendl ...
- HDU 5391 Zball in Tina Town【威尔逊定理】
<题目链接> Zball in Tina Town Problem Description Tina Town is a friendly place. People there care ...
- hdu 5391 Zball in Tina Town 威尔逊定理 数学
Zball in Tina Town Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Oth ...
- hdu 5391 Zball in Tina Town(打表找规律)
问题描述 Tina Town 是一个善良友好的地方,这里的每一个人都互相关心. Tina有一个球,它的名字叫zball.zball很神奇,它会每天变大.在第一天的时候,它会变大11倍.在第二天的时候, ...
- HDU 5391 Zball in Tina Town (打表,水)
题意: Tina有一个球,它的名字叫zball.zball很神奇,它会每天变大.在第一天的时候,它会变大1倍.在第二天的时候,它会变大2倍.在第n天的时候,它会变大n倍.zball原来的体积是1.Ti ...
- hdoj 5391 Zball in Tina Town
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5391 相关数论结论: 威尔逊定理——当且仅当p为素数时:( p -1 )! ≡ p-1 ( mod p ...
- HDU-5391 Zball in Tina Town
(n-1)!/n 就是如果n为素数,就等于n-1else为0. 求素数表: Zball in Tina Town Time Limit: 3000/1500 MS (Java/Others) Memo ...
- hdu5391 Zball in Tina Town(威尔逊定理)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Zball in Tina Town Time Limit: 3000/1500 ...
- 判素数+找规律 BestCoder Round #51 (div.2) 1001 Zball in Tina Town
题目传送门 /* 题意: 求(n-1)! mod n 数论:没啥意思,打个表能发现规律,但坑点是4时要特判! */ /***************************************** ...
随机推荐
- Hibernate: '\xE6\x9D\x8E\xE5\x9B\x9B' for column 'cust_name' at row 1 解决
新建Hibernate,出现异常 20:11:03,117 WARN SqlExceptionHelper:137 - SQL Error: 1366, SQLState: HY000 20:11:0 ...
- margin-top的兼容问题
产生的条件:子元素给了margin-top,并且父元素没有浮也没有其他样式,浏览器解析的结果是父元素下去了. 解决方法:1.给子元素或者父元素添加浮动,缺点:如果不需要浮动,添加浮动也页面布局会乱 2 ...
- 20181115 python-第一章学习小结part4
python第一章 流程控制 单分枝任务 If 条件: 满足条件执行动作 注意if下面的缩进,建议直接使用tab键,4个空格太难输入. 双分枝任务 If 条件: 满足条件执行动作 else: 条件 ...
- android studio gradle 打jar 包 (混淆+第三方库包)
将依赖的第三方库打包进自己的jar包 1.先将第三方的库包拿到,然后添加jar包到项目的libs. 2.项目的build.gradle脚本添加下面的task: task buildJar(depend ...
- Unity-NGUI UILabel换行
表里填写的是"\n",代码读出来会变成"\\n", 那就需要代码中将 "\\n" 重新变成 "\n" 才能够换行. st ...
- framework7 入门(数据绑定)
数据绑定是用template7,官网,framework7内置template7,不用单独下载,下面介绍一些简单的绑定 当你的数据是个数组 return{ data:function(){ let i ...
- 初次接触之R语言
一.什么是R? 最受欢迎的数据分析和可视化平台之一. 其他分析平台:Excel.SPSS.SAS 二.为什么选择R? 免费.支持WINDOWS/MAC OS/Linux. 开源
- 线程(Thread、ThreadPool)
多线程的操作,推荐使用线程池线程而非新建线程.因为就算只是单纯的新建一个线程,这个线程什么事情也不做,都大约需要1M的内存空间来存储执行上下文数据结构,并且线程的创建与回收也需要消耗资源,耗费时间.而 ...
- ubuntu amd64 的锐捷连接解决办法---武汉大学
昨日博主闲来弄了个ubuntu玩玩,于是上网成了个问题,博主武大信息学部,锐捷上校园网.装的是13.04的amd64. 凑巧在珞珈山水bbs上看到我在解决上网出现问题出现的相同情况,但是没有人回答,于 ...
- sqlserver 电脑重启以后服务突然无法启动 报错
可能是sql server 评估期已过 在升级中输入产品密钥试试