问题:

执行任何hadoop命令,都会提示如下WARN。虽然影响不大,但是每次运行一个命令都有这么个WARN,让人很不爽,作为一个精致的男人, 必须要干掉它。

[root@master logs]# hdfs dfs -cat /output/part-r-
// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

网上搜了下,这个问题有两个原因。

解决办法1:

增加调试信息设置

export HADOOP_ROOT_LOGGER=DEBUG,console

再执行一遍命令, 关注到红色部分。

[root@master native]# hdfs dfs -cat /output/part-r-
// :: DEBUG util.Shell: setsid exited with exit code
// :: DEBUG conf.Configuration: parsing URL jar:file:/opt/hadoop/hadoop-2.9./share/hadoop/common/hadoop-common-2.9..jar!/core-default.xml
// :: DEBUG conf.Configuration: parsing input stream sun.net.www.protocol.jar.JarURLConnection$JarURLInputStream@20e2cbe0
// :: DEBUG conf.Configuration: parsing URL file:/opt/hadoop/hadoop-2.9./etc/hadoop/core-site.xml
// :: DEBUG conf.Configuration: parsing input stream java.io.BufferedInputStream@a67c67e
// :: DEBUG lib.MutableMetricsFactory: field org.apache.hadoop.metrics2.lib.MutableRate org.apache.hadoop.security.UserGroupInformation$UgiMetrics.loginSuccess with annotation @org.apache.hadoop.metrics2.annotation.Metric(about=, sampleName=Ops, always=false, type=DEFAULT, valueName=Time, value=[Rate of successful kerberos logins and latency (milliseconds)])
// :: DEBUG lib.MutableMetricsFactory: field org.apache.hadoop.metrics2.lib.MutableRate org.apache.hadoop.security.UserGroupInformation$UgiMetrics.loginFailure with annotation @org.apache.hadoop.metrics2.annotation.Metric(about=, sampleName=Ops, always=false, type=DEFAULT, valueName=Time, value=[Rate of failed kerberos logins and latency (milliseconds)])
// :: DEBUG lib.MutableMetricsFactory: field org.apache.hadoop.metrics2.lib.MutableRate org.apache.hadoop.security.UserGroupInformation$UgiMetrics.getGroups with annotation @org.apache.hadoop.metrics2.annotation.Metric(about=, sampleName=Ops, always=false, type=DEFAULT, valueName=Time, value=[GetGroups])
// :: DEBUG lib.MutableMetricsFactory: field private org.apache.hadoop.metrics2.lib.MutableGaugeLong org.apache.hadoop.security.UserGroupInformation$UgiMetrics.renewalFailuresTotal with annotation @org.apache.hadoop.metrics2.annotation.Metric(about=, sampleName=Ops, always=false, type=DEFAULT, valueName=Time, value=[Renewal failures since startup])
// :: DEBUG lib.MutableMetricsFactory: field private org.apache.hadoop.metrics2.lib.MutableGaugeInt org.apache.hadoop.security.UserGroupInformation$UgiMetrics.renewalFailures with annotation @org.apache.hadoop.metrics2.annotation.Metric(about=, sampleName=Ops, always=false, type=DEFAULT, valueName=Time, value=[Renewal failures since last successful login])
// :: DEBUG impl.MetricsSystemImpl: UgiMetrics, User and group related metrics
// :: DEBUG security.SecurityUtil: Setting hadoop.security.token.service.use_ip to true
// :: DEBUG security.Groups: Creating new Groups object
// :: DEBUG util.NativeCodeLoader: Trying to load the custom-built native-hadoop library...
18/12/20 17:20:44 DEBUG util.NativeCodeLoader: Failed to load native-hadoop with error: java.lang.UnsatisfiedLinkError: /opt/hadoop/hadoop-2.9.2/lib/native/libhadoop.so.1.0.0: /lib64/libc.so.6: version `GLIBC_2.14' not found (required by /opt/hadoop/hadoop-2.9.2/lib/native/libhadoop.so.1.0.0)
18/12/20 17:20:44 DEBUG util.NativeCodeLoader: java.library.path=/opt/hadoop/hadoop-2.9.2/lib:/opt/hadoop/hadoop-2.9.2/lib/native
18/12/20 17:20:44 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
// :: DEBUG util.PerformanceAdvisory: Falling back to shell based
// :: DEBUG security.JniBasedUnixGroupsMappingWithFallback: Group mapping impl=org.apache.hadoop.security.ShellBasedUnixGroupsMapping
// :: DEBUG security.Groups: Group mapping impl=org.apache.hadoop.security.JniBasedUnixGroupsMappingWithFallback; cacheTimeout=; warningDeltaMs=
// :: DEBUG core.Tracer: sampler.classes = ; loaded no samplers
// :: DEBUG core.Tracer: span.receiver.classes = ; loaded no span receivers
// :: DEBUG security.UserGroupInformation: hadoop login
// :: DEBUG security.UserGroupInformation: hadoop login commit
// :: DEBUG security.UserGroupInformation: using local user:UnixPrincipal: root
// :: DEBUG security.UserGroupInformation: Using user: "UnixPrincipal: root" with name root
// :: DEBUG security.UserGroupInformation: User entry: "root"
// :: DEBUG security.UserGroupInformation: Assuming keytab is managed externally since logged in from subject.
// :: DEBUG security.UserGroupInformation: UGI loginUser:root (auth:SIMPLE)
// :: DEBUG core.Tracer: sampler.classes = ; loaded no samplers
// :: DEBUG core.Tracer: span.receiver.classes = ; loaded no span receivers
// :: DEBUG fs.FileSystem: Loading filesystems
// :: DEBUG fs.FileSystem: file:// = class org.apache.hadoop.fs.LocalFileSystem from /opt/hadoop/hadoop-2.9.2/share/hadoop/common/hadoop-common-2.9.2.jar
// :: DEBUG fs.FileSystem: viewfs:// = class org.apache.hadoop.fs.viewfs.ViewFileSystem from /opt/hadoop/hadoop-2.9.2/share/hadoop/common/hadoop-common-2.9.2.jar
// :: DEBUG fs.FileSystem: ftp:// = class org.apache.hadoop.fs.ftp.FTPFileSystem from /opt/hadoop/hadoop-2.9.2/share/hadoop/common/hadoop-common-2.9.2.jar
// :: DEBUG fs.FileSystem: har:// = class org.apache.hadoop.fs.HarFileSystem from /opt/hadoop/hadoop-2.9.2/share/hadoop/common/hadoop-common-2.9.2.jar
// :: DEBUG fs.FileSystem: http:// = class org.apache.hadoop.fs.http.HttpFileSystem from /opt/hadoop/hadoop-2.9.2/share/hadoop/common/hadoop-common-2.9.2.jar
// :: DEBUG fs.FileSystem: https:// = class org.apache.hadoop.fs.http.HttpsFileSystem from /opt/hadoop/hadoop-2.9.2/share/hadoop/common/hadoop-common-2.9.2.jar
// :: DEBUG fs.FileSystem: hdfs:// = class org.apache.hadoop.hdfs.DistributedFileSystem from /opt/hadoop/hadoop-2.9.2/share/hadoop/hdfs/lib/hadoop-hdfs-client-2.9.2.jar
// :: DEBUG fs.FileSystem: webhdfs:// = class org.apache.hadoop.hdfs.web.WebHdfsFileSystem from /opt/hadoop/hadoop-2.9.2/share/hadoop/hdfs/lib/hadoop-hdfs-client-2.9.2.jar
// :: DEBUG fs.FileSystem: swebhdfs:// = class org.apache.hadoop.hdfs.web.SWebHdfsFileSystem from /opt/hadoop/hadoop-2.9.2/share/hadoop/hdfs/lib/hadoop-hdfs-client-2.9.2.jar
// :: DEBUG fs.FileSystem: hftp:// = class org.apache.hadoop.hdfs.web.HftpFileSystem from /opt/hadoop/hadoop-2.9.2/share/hadoop/hdfs/lib/hadoop-hdfs-client-2.9.2.jar
// :: DEBUG fs.FileSystem: hsftp:// = class org.apache.hadoop.hdfs.web.HsftpFileSystem from /opt/hadoop/hadoop-2.9.2/share/hadoop/hdfs/lib/hadoop-hdfs-client-2.9.2.jar
// :: DEBUG fs.FileSystem: Looking for FS supporting hdfs
// :: DEBUG fs.FileSystem: looking for configuration option fs.hdfs.impl
// :: DEBUG fs.FileSystem: Looking in service filesystems for implementation class
// :: DEBUG fs.FileSystem: FS for hdfs is class org.apache.hadoop.hdfs.DistributedFileSystem
// :: DEBUG impl.DfsClientConf: dfs.client.use.legacy.blockreader.local = false
// :: DEBUG impl.DfsClientConf: dfs.client.read.shortcircuit = false
// :: DEBUG impl.DfsClientConf: dfs.client.domain.socket.data.traffic = false
// :: DEBUG impl.DfsClientConf: dfs.domain.socket.path =
// :: DEBUG hdfs.DFSClient: Sets dfs.client.block.write.replace-datanode-on-failure.min-replication to
// :: DEBUG retry.RetryUtils: multipleLinearRandomRetry = null
// :: DEBUG ipc.Server: rpcKind=RPC_PROTOCOL_BUFFER, rpcRequestWrapperClass=class org.apache.hadoop.ipc.ProtobufRpcEngine$RpcProtobufRequest, rpcInvoker=org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker@932bc4a
// :: DEBUG ipc.Client: getting client out of cache: org.apache.hadoop.ipc.Client@1b1426f4
// :: DEBUG util.PerformanceAdvisory: Both short-circuit local reads and UNIX domain socket are disabled.
// :: DEBUG sasl.DataTransferSaslUtil: DataTransferProtocol not using SaslPropertiesResolver, no QOP found in configuration for dfs.data.transfer.protection
// :: DEBUG ipc.Client: The ping interval is ms.
// :: DEBUG ipc.Client: Connecting to master/192.168.102.3:
// :: DEBUG ipc.Client: IPC Client () connection to master/192.168.102.3: from root: starting, having connections
// :: DEBUG ipc.Client: IPC Client () connection to master/192.168.102.3: from root sending # org.apache.hadoop.hdfs.protocol.ClientProtocol.getFileInfo
// :: DEBUG ipc.Client: IPC Client () connection to master/192.168.102.3: from root got value #
// :: DEBUG ipc.ProtobufRpcEngine: Call: getFileInfo took 42ms
// :: DEBUG ipc.Client: IPC Client () connection to master/192.168.102.3: from root sending # org.apache.hadoop.hdfs.protocol.ClientProtocol.getBlockLocations
// :: DEBUG ipc.Client: IPC Client () connection to master/192.168.102.3: from root got value #
// :: DEBUG ipc.ProtobufRpcEngine: Call: getBlockLocations took 2ms
// :: DEBUG hdfs.DFSClient: newInfo = LocatedBlocks{
fileLength=
underConstruction=false
blocks=[LocatedBlock{BP--192.168.102.3-:blk_1073741832_1008; getBlockSize()=; corrupt=false; offset=; locs=[DatanodeInfoWithStorage[192.168.102.4:,DS----a4e3-1517663a515a,DISK], DatanodeInfoWithStorage[192.168.102.5:,DS-ca41aefb-6ecd-48c8-a063-dab5052a96d4,DISK]]}]
lastLocatedBlock=LocatedBlock{BP--192.168.102.3-:blk_1073741832_1008; getBlockSize()=; corrupt=false; offset=; locs=[DatanodeInfoWithStorage[192.168.102.5:,DS-ca41aefb-6ecd-48c8-a063-dab5052a96d4,DISK], DatanodeInfoWithStorage[192.168.102.4:,DS----a4e3-1517663a515a,DISK]]}
isLastBlockComplete=true}
// :: DEBUG hdfs.DFSClient: Connecting to datanode 192.168.102.4:
// :: DEBUG ipc.Client: IPC Client () connection to master/192.168.102.3: from root sending # org.apache.hadoop.hdfs.protocol.ClientProtocol.getServerDefaults
// :: DEBUG ipc.Client: IPC Client () connection to master/192.168.102.3: from root got value #
// :: DEBUG ipc.ProtobufRpcEngine: Call: getServerDefaults took 0ms
// :: DEBUG sasl.SaslDataTransferClient: SASL client skipping handshake in unsecured configuration for addr = /192.168.102.4, datanodeId = DatanodeInfoWithStorage[192.168.102.4:,DS----a4e3-1517663a515a,DISK]
hadoop
hbase
hive
mapreduce
spark
sqoop
storm
// :: DEBUG ipc.Client: stopping client from cache: org.apache.hadoop.ipc.Client@1b1426f4
// :: DEBUG ipc.Client: removing client from cache: org.apache.hadoop.ipc.Client@1b1426f4
// :: DEBUG ipc.Client: stopping actual client because no more references remain: org.apache.hadoop.ipc.Client@1b1426f4
// :: DEBUG ipc.Client: Stopping client
// :: DEBUG ipc.Client: IPC Client () connection to master/192.168.102.3: from root: closed
// :: DEBUG ipc.Client: IPC Client () connection to master/192.168.102.3: from root: stopped, remaining connections
// :: DEBUG util.ShutdownHookManager: Completed shutdown in 0.004 seconds; Timeouts:
// :: DEBUG util.ShutdownHookManager: ShutdownHookManger completed shutdown.

说明系统中的glibc的版本和libhadoop.so需要的版本不一致导致。

查看系统的libc版本

[root@master native]# ll /lib64/libc.so.
lrwxrwxrwx. root root 12月 : /lib64/libc.so. -> libc-2.12.so

系统版本小于libhadoop.so.1.0.0所需版本 version `GLIBC_2.14'

离线安装gcc4.8

https://blog.csdn.net/qq805934132/article/details/82893724

下载glibc

一、安装glibc-2.14(由于我的集群是内部局域网,所以只能找了台其他的服务器编译了一下

[root@jrgc130 ~]# wget http://ftp.gnu.org/gnu/glibc/glibc-2.14.tar.gz
[root@jrgc130 ~]# mv glibc-2.14.tar.gz /opt/software
[root@jrgc130 ~]# cd /opt/software
[root@jrgc130 software]# tar xf glibc-2.14.tar.gz
[root@jrgc130 software]# cd glibc-2.14
[root@jrgc130 glibc-2.14]# mkdir build
[root@jrgc130 glibc-2.14]# cd build
[root@jrgc130 build]# ../configure --prefix=/usr/local/glibc-2.14
[root@jrgc130 build]# make -j4
[root@jrgc130 build]# make install

此处因为缺少很多库,没有编译成功。后续再想办法解决吧

解决办法2:

另一个原因是由于在apache hadoop官网上下载的hadoopXXX.tar.gz实际是32位的机器上编译的(蛋疼吧),我集群使用的64bit的,加载.so文件时出错,当然基本上不影响使用hadoop(如果你使用mahout做一些机器学习的任务时有可能会遇到麻烦,加载不成功,任务直接退出,所以还是有必要解决掉这个WARN的)。

具体办法:

1. 下载hadoop-2.9.2-src.tar.gz源码  https://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-2.9.2/hadoop-2.9.2-src.tar.gz

2. 在某台64位机器上编译(由于我的集群机器是内部局域网,所以只能找一台能连外网的服务器编译)

3. 替换之前的$HADOOP_HOME/lib/native为新编译的native

Hadoop源码编译

编译步骤:

首先需要在虚拟机进行下面软件的安装

1、安装jdk 配置环境变量

2、安装maven 配置环境变量

下载地址  http://maven.apache.org/download.cgi 根据需要下载适合自己的版本,我选择的是apache-maven-3.6.0-bin.tar.gz
解压   tar -zxvf apache-maven-3.6.0-bin.tar.gz 
3、配置maven环境变量 
vi ~/.bashrc
export MAVEN_HOME=/home/yuany/hadoop/apache-maven-3.6.

export PATH=$MAVEN_HOME:/home/yuany/android-studio/bin:/usr/local/lib/anaconda2/bin:$JAVA_HOME/bin:$JRE_HOME/bin:$PATH

source ~/.bashrc

4、检验是否安装成功; 
mvn -version
5、安装依赖库
sudo apt-get install g++ autoconf automake libtool cmake zlib1g-dev pkg-config libssl-dev

6、安装protobuf

  1. 下载protobuf代码 https://github.com/protocolbuffers/protobuf/releases
  2. 安装protobuf
yuany@Mobile238:~/hadoop$ tar xzvf protobuf-all-3.6..tar.gz
yuany@Mobile238:~/hadoop$ cd protobuf-3.6./
yuany@Mobile238:~/hadoop/protobuf-3.6.$ ./configure --prefix=/usr/local/protobuf
yuany@Mobile238:~/hadoop/protobuf-3.6.$ make
yuany@Mobile238:~/hadoop/protobuf-3.6.$ make install

  3. 至此安装完成,下面是配置:

  (1) vim ~/.bashrc,添加

export PATH=$PATH:/usr/local/protobuf/bin/
export PKG_CONFIG_PATH=/usr/local/protobuf/lib/pkgconfig/
  保存执行,source ~/.bashrc。输入  protoc --version 验证是否成功,出现 libprotoc 3.6.1证明成功!

编译Hadoop

先把源码拷贝到 linux上,进入源码目录/home/yuany/hadoop/hadoop-2.9.2-src

执行

mvn clean package -Pdist,native -DskipTests -Dtar 

等待结果......经过漫长的等待。如果看到如下结果证明编译成功!

解决讨厌的警告 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable的更多相关文章

  1. Hadoop _ 疑难杂症 解决1 - WARN util.NativeCodeLoader: Unable to load native-hadoop library for your plat

    最近博主在进行Hive测试 压缩解压缩的时候 遇到了这个问题, 该问题也常出现在日常 hdfs 指令中, 在启动服务 与 hdfs dfs 执行指令的时候 : 都会显示该提示,下面描述下该问题应该如何 ...

  2. Hadoop - 彻底解决警告:WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform...

    目录 1 - 在日志配置文件中忽略警告 - 有效 2 - 指定本地库的路径 - 无效 3 - 不使用 Hadoop 本地库 - 无效 4 - 替换 Hadoop 本地库 - 有效 5 - 根据源码,编 ...

  3. HADOOP:WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable终于解决了

    WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin- ...

  4. Hadoop集群“WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable”解决办法

    Hadoop集群部署完成后,经常会提示 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platfo ...

  5. hadoop命令运行,去除:WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform 警告

    参照:Hadoop之—— WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... 修 ...

  6. Hadoop问题解决:WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

    在配置好hadoop的环境之后,命令启动./start-all.sh发现经常出现这样的一个警告: WARN util.NativeCodeLoader: Unable to load native-h ...

  7. WARN util.NativeCodeLoader: Unable to load native-hadooplibrary for your platform… using builtin-java classes where applicable

    方法1glibc 官方要求的2.14版本以上 方法2:http://www.secdoctor.com/html/yyjs/31101.html 方法3: http://dl.bintray.com/ ...

  8. [hadoop] WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

    hadoop 启动后,有警告信息: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform ...

  9. hadoop2.4 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

    在Ubuntu上安装完hadoop2.4以后,使用以下命令: hadoop fs -ls // :: WARN util.NativeCodeLoader: Unable to load native ...

随机推荐

  1. mysql 存储 2

    mysql> create database db1; mysql> use db1; mysql> create table PLAYERS as select * from TE ...

  2. 练习UML类图中的类的表示

    第一部分:UML类图(class diagram) 类图用来展现一组类.类的特性以及其类相互之间的关系,一个类图由一组类以及它们之间的关系构成,类图用来对系统的领域概念以及静态结构进行建模. 在软件模 ...

  3. python基础—列表的使用[]

    names = ['zhangyang','guyun','xiangpeng','xuliangchen']print(names[0])print(names[1:3])#切片print(name ...

  4. ubuntu16.04 解决boot空间不足

    1. dpkg --get-selections |grep linux-image #查看已安装内核版本号 2. uname -a #查看现运行版本 3. sudo apt-get purge 版本 ...

  5. JAVA003-变量、数据类型

    一.变量的三个元素:变量名(房间名字).变量类型(房间的类型).变量值(入住的人). 二.变量的命名规则: 1.驼峰法     2.尽量简单,见名知意     3.长度没有限制     4.满足标志符 ...

  6. idea 从git上checkout项目下来,project没有文件目录结构

    1.去到 查看sdk有没有配置 查看该部分是否是空的,如果没有显示项目,添加导入项目

  7. 配置STP、RSTP以及负载均衡

    生成树协议是一种二层管理协议,它通过有选择性地阻塞网络冗余链路来达到消除网络二层环路的目的,同时具备链路的备份功能. 每个VLAN都生成一棵树是一种比较直接,而且最简单的解决方法.它能够保证每一个VL ...

  8. 设计模式的uml图的关键(核心)

    每个设计模式的关键的部位就是,其变化点.用抽象来封装变化点 如下图的代理模式 关键点就是框图内的subject定义了 实际对象 和代理对象都具有的接口.才形成代理模式

  9. windows7 安装pytorch

    这几天为了运行python的图像转换的项目,不得不安装pytorch,安装了两天,最后把经验记录一下. 如果版本不匹配会抛出很多错误,而网上的各种解决方式有大部分也解决不了问题. 在安装pytorch ...

  10. 代码中设置color的selector

    //应该用getColorStateList这种方式 xml中设置时直接color引用就可以了 textView.setTextColor(getResources().getColorStateLi ...