Getting Started with Word2Vec
Getting Started with Word2Vec
1. Source by Google
Project with Code: https://code.google.com/archive/p/word2vec/
Blog: Learning Meaning Behind Words
Paper:
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013.
- Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic Regularities in Continuous Space Word Representations. In Proceedings of NAACL HLT, 2013.
- Tomas Mikolov, Quoc V. Le, Ilya Sutskever. Exploiting Similarities among Languages for Machine Translation
- NIPS DeepLearning Workshop NN for Text by Tomas Mikolov and etc. https://docs.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit
2. Best explaination
Best explained with original models, optimizing methods, Back-propagation background and Word Embedding Visual Inspector
paper: word2vec Parameter Learning Explained
Slides: Word Embedding Explained and Visualized
Youtube Video: Word Embedding Explained and Visualized – word2vec and wevi
Demo: wevi: word embedding visual inspector
3. Word2Vec Tutorials
Word2Vec Tutorial by Chris McCormick
Chris McCormick http://mccormickml.com/
Note: skip over the usual introductory and abstract insights about Word2Vec, and get into more of the details
Word2Vec Tutorial – The Skip-Gram Model
Word2Vec Tutorial Part 2 – Negative Sampling
Alex Minnaar’s Tutorials
Alex Minnaar http://alexminnaar.com/
Word2Vec Tutorial Part I: The Skip-Gram Model
Word2Vec Tutorial Part II: The Continuous Bag-of-Words Model
4. Learning by Coding
Distributed Representations of Sentences and Documents http://nbviewer.jupyter.org/github/fbkarsdorp/doc2vec/blob/master/doc2vec.ipynb
An Anatomy of Key Tricks in word2vec project with examples http://nbviewer.jupyter.org/github/dolaameng/tutorials/blob/master/word2vec-abc/poc/pyword2vec_anatomy.ipynb
Python Word2Vec by Gensim related articles
- Deep learning with word2vec and gensim, Part One
- Word2vec in Python, Part Two: Optimizing
- Parallelizing word2vec in Python, Part Three
- Gensim word2vec document: models.word2vec – Deep learning with word2vec
- Word2vec Tutorial by Radim Řehůřek (Note: Simple but very powerful tutorial for word2vec model training in gensim.)
5. Ohter Word2Vec Resources
Word2Vec Resources by Chris McCormick
References
Getting Started with Word2Vec的更多相关文章
- word2vec 中的数学原理详解
word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Miko ...
- Java豆瓣电影爬虫——使用Word2Vec分析电影短评数据
在上篇实现了电影详情和短评数据的抓取.到目前为止,已经抓了2000多部电影电视以及20000多的短评数据. 数据本身没有规律和价值,需要通过分析提炼成知识才有意义.抱着试试玩的想法,准备做一个有关情感 ...
- word2vec参数调整 及lda调参
一.word2vec调参 ./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -neg ...
- [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...
- Word2Vec 使用总结
word2vec 是google 推出的做词嵌入(word embedding)的开源工具. 简单的说,它在给定的语料库上训练一个模型,然后会输出所有出现在语料库上的单词的向量表示,这个向量称为&qu ...
- Word2vec多线程(tensorflow)
workers = [] for _ in xrange(opts.concurrent_steps): t = threading.Thread(target=self._train_thread_ ...
- Word2vec 模型载入(tensorflow)
opts = Options() with tf.Graph().as_default(), tf.Session() as session: model = Word2Vec(opts, sessi ...
- Forward-backward梯度求导(tensorflow word2vec实例)
考虑不可分的例子 通过使用basis functions 使得不可分的线性模型变成可分的非线性模型 最常用的就是写出一个目标函数 并且使用梯度下降法 来计算 梯度的下降法的梯度 ...
- Tensorflow word2vec编译运行
Word2vec 更完整版本(非demo)的代码在 tensorflow/models/embedding/ 首先需要安装bazel 来进行编译 bazel可以下载最新的binary安装文件, ...
- 中英文维基百科语料上的Word2Vec实验
最近试了一下Word2Vec, GloVe 以及对应的python版本 gensim word2vec 和 python-glove,就有心在一个更大规模的语料上测试一下,自然而然维基百科的语料进入了 ...
随机推荐
- 手写AVL 树(下)
上一篇 手写AVL树上实现了AVL树的插入和查询 上代码: 头文件:AVL.h #include <iostream> template<typename T1,typename T ...
- 更为复杂C程序的运行时结构
运行环境 win 10 企业版 1809 17763.194,MinGW V3.14 32位,Bundled V3.13.2,Bundled GDB V8.2. 在C语言中,栈的方向是从高地址向低地址 ...
- Python+Selenium+PageObject
一.安装page_objects测试库 二.目录介绍 1.pages包:用于各界面元素定位,如BaseLoginPage.py 2.testcases包:用于编写各功能测试用例,如Login.py 3 ...
- spark-sql分组去重总数统计uv
SparkConf sparkConf = new SparkConf(); sparkConf .setAppName("Internal_Func") .setMaster(& ...
- 友金所招聘Java工程师面试题
友金所是一家位于深圳南山科技园的P2P网贷公司,用友集团控股.该公司采用渐进式的问答面试,没有笔试题.比如面试者说熟悉多线程,面试官就问哪些方式解决并发:面试者说采用Synchronized或者Ree ...
- 002-zookeeper 基本配置、安装启动 windows环境
一. 概述 ZooKeeper是Hadoop的正式子项目,它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护.名字服务.分布式同步.组服务等.ZooKeeper的目标就是封装好复杂易出 ...
- ThinkPHP设计模式与Trait技术
阅读原文 设计模式 单例模式 class Site { //属性 public $siteName; //本类的静态实例 protected static $instance = null; //禁用 ...
- 【Mac】-NO.133.Mac.1 -【重置忘记macos root密码】
Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...
- (转) jmeter 获取cookie
转自 https://blog.csdn.net/five3/article/details/53842283 jmeter是测试过程中会被用到的一个测试工具,我们即可用来进行压力的压测,也可以用 ...
- andorid开发build.gradle 增加几种产品的方法
因为需要有些ndk的开发,cmakelists里需要定义不同的变量,这个在网上搜索解决方案,不是很容易就直接找到答案. 尝试了不少,最后找到解决方案.升级Gradle3.0,这个文章价值高. 在ras ...