Getting Started with Word2Vec
Getting Started with Word2Vec
1. Source by Google
Project with Code: https://code.google.com/archive/p/word2vec/
Blog: Learning Meaning Behind Words
Paper:
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013.
- Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic Regularities in Continuous Space Word Representations. In Proceedings of NAACL HLT, 2013.
- Tomas Mikolov, Quoc V. Le, Ilya Sutskever. Exploiting Similarities among Languages for Machine Translation
- NIPS DeepLearning Workshop NN for Text by Tomas Mikolov and etc. https://docs.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit
2. Best explaination
Best explained with original models, optimizing methods, Back-propagation background and Word Embedding Visual Inspector
paper: word2vec Parameter Learning Explained
Slides: Word Embedding Explained and Visualized
Youtube Video: Word Embedding Explained and Visualized – word2vec and wevi
Demo: wevi: word embedding visual inspector
3. Word2Vec Tutorials
Word2Vec Tutorial by Chris McCormick
Chris McCormick http://mccormickml.com/
Note: skip over the usual introductory and abstract insights about Word2Vec, and get into more of the details
Word2Vec Tutorial – The Skip-Gram Model
Word2Vec Tutorial Part 2 – Negative Sampling
Alex Minnaar’s Tutorials
Alex Minnaar http://alexminnaar.com/
Word2Vec Tutorial Part I: The Skip-Gram Model
Word2Vec Tutorial Part II: The Continuous Bag-of-Words Model
4. Learning by Coding
Distributed Representations of Sentences and Documents http://nbviewer.jupyter.org/github/fbkarsdorp/doc2vec/blob/master/doc2vec.ipynb
An Anatomy of Key Tricks in word2vec project with examples http://nbviewer.jupyter.org/github/dolaameng/tutorials/blob/master/word2vec-abc/poc/pyword2vec_anatomy.ipynb
Python Word2Vec by Gensim related articles
- Deep learning with word2vec and gensim, Part One
- Word2vec in Python, Part Two: Optimizing
- Parallelizing word2vec in Python, Part Three
- Gensim word2vec document: models.word2vec – Deep learning with word2vec
- Word2vec Tutorial by Radim Řehůřek (Note: Simple but very powerful tutorial for word2vec model training in gensim.)
5. Ohter Word2Vec Resources
Word2Vec Resources by Chris McCormick
References
Getting Started with Word2Vec的更多相关文章
- word2vec 中的数学原理详解
word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Miko ...
- Java豆瓣电影爬虫——使用Word2Vec分析电影短评数据
在上篇实现了电影详情和短评数据的抓取.到目前为止,已经抓了2000多部电影电视以及20000多的短评数据. 数据本身没有规律和价值,需要通过分析提炼成知识才有意义.抱着试试玩的想法,准备做一个有关情感 ...
- word2vec参数调整 及lda调参
一.word2vec调参 ./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -neg ...
- [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...
- Word2Vec 使用总结
word2vec 是google 推出的做词嵌入(word embedding)的开源工具. 简单的说,它在给定的语料库上训练一个模型,然后会输出所有出现在语料库上的单词的向量表示,这个向量称为&qu ...
- Word2vec多线程(tensorflow)
workers = [] for _ in xrange(opts.concurrent_steps): t = threading.Thread(target=self._train_thread_ ...
- Word2vec 模型载入(tensorflow)
opts = Options() with tf.Graph().as_default(), tf.Session() as session: model = Word2Vec(opts, sessi ...
- Forward-backward梯度求导(tensorflow word2vec实例)
考虑不可分的例子 通过使用basis functions 使得不可分的线性模型变成可分的非线性模型 最常用的就是写出一个目标函数 并且使用梯度下降法 来计算 梯度的下降法的梯度 ...
- Tensorflow word2vec编译运行
Word2vec 更完整版本(非demo)的代码在 tensorflow/models/embedding/ 首先需要安装bazel 来进行编译 bazel可以下载最新的binary安装文件, ...
- 中英文维基百科语料上的Word2Vec实验
最近试了一下Word2Vec, GloVe 以及对应的python版本 gensim word2vec 和 python-glove,就有心在一个更大规模的语料上测试一下,自然而然维基百科的语料进入了 ...
随机推荐
- 01背包 || BZOJ 1606: [Usaco2008 Dec]Hay For Sale 购买干草 || Luogu P2925 [USACO08DEC]干草出售Hay For Sale
题面:P2925 [USACO08DEC]干草出售Hay For Sale 题解:无 代码: #include<cstdio> #include<cstring> #inclu ...
- JAVA生成(可执行)Jar包的全面详解说明 [打包][SpringBoot][Eclipse][IDEA][Maven][Gradle][分离][可执行]
辛苦所得,转载还请注明: https://www.cnblogs.com/applerosa/p/9739007.html 得空整理了关于java 开发中,所有打包方式的 一个操作方法, 有基于ID ...
- Elasticsearch学习笔记(七)document小结
一.生成document id 1.自动生成document id 自动生成的id,长度为20个字符,URL安全,base64编码,GUID,分布式系统并行生成时不可能 ...
- pycharm 激活方法
方法一: 服务器激活 pycharm 安装: https://www.cnblogs.com/pyyu/articles/9210171.html 方法二: 密钥激活 pycharm 获取激活码 (密 ...
- fiddler 安装证书问题,和安装完后,浏览器无法访问问题
安装证书问题 https://blog.csdn.net/l1336037686/article/details/78322014 浏览器无法访问问题 https://blog.csdn.net/u0 ...
- oracle单字段拆分成多行
已上图为例 先以逗号分隔拆分 拆分函数: CREATE OR REPLACE FUNCTION SPLIT(P_STRING VARCHAR2, P_SEP VARCHAR2 := ',') RETU ...
- css阴影框
选中div浮动的阴影框.example-card:hover {box-shadow: 0 15px 30px rgba(0, 0, 0, 0.1);transform: translate3d(0, ...
- 下载安装Git
1.下载地址:https://git-scm.com/download/win 这里是下载64位的 2.安装步骤 (1)下载完成得到一个exe文件,双击傻瓜式安装 (2)开始安装 (3)选择安装的工 ...
- python数组
1. 初始化一个具有20个元素,元素的值为 1*1, 2*2, 3*3, ......., n*n的数组 A = [i*i for i in range(1, 20)] print A 2. 初始化一 ...
- React 学习过程中常见的错误
1, react报错Module not found: Error: Can't resolve 解决: 一般是加载文件的路径写错了: