【原创】大数据基础之Spark(1)Spark Submit即Spark任务提交过程
Spark2.1.1
一 Spark Submit本地解析
1.1 现象
提交命令:
spark-submit --master local[10] --driver-memory 30g --class app.package.AppClass app-1.0.jar
进程:
hadoop 225653 0.0 0.0 11256 364 ? S Aug24 0:00 bash /$spark-dir/bin/spark-class org.apache.spark.deploy.SparkSubmit --master local[10] --driver-memory 30g --class app.package.AppClass app-1.0.jar
hadoop 225654 0.0 0.0 34424 2860 ? Sl Aug24 0:00 /$jdk_dir/bin/java -Xmx128m -cp /spark-dir/jars/* org.apache.spark.launcher.Main org.apache.spark.deploy.SparkSubmit --master local[10] --driver-memory 30g --class app.package.AppClass app-1.0.jar
1.2 执行过程
1.2.1 脚本执行
-bash-4.1$ cat bin/spark-submit
#!/usr/bin/env bash
if [ -z "${SPARK_HOME}" ]; then
source "$(dirname "$0")"/find-spark-home
fi# disable randomized hash for string in Python 3.3+
export PYTHONHASHSEED=0exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"
注释:这里执行了另一个脚本spark-class,具体如下:
-bash-4.1$ cat bin/spark-class
...
build_command() {
"$RUNNER" -Xmx128m -cp "$LAUNCH_CLASSPATH" org.apache.spark.launcher.Main "$@"
printf "%d\0" $?
}CMD=()
while IFS= read -d '' -r ARG; do
CMD+=("$ARG")
done < <(build_command "$@")...
CMD=("${CMD[@]:0:$LAST}")
exec "${CMD[@]}"
注释:这里执行java class: org.apache.spark.launcher.Main,并传入参数,具体如下:
1.2.2 代码执行
org.apache.spark.launcher.Main
...
builder = new SparkSubmitCommandBuilder(help);
...
List<String> cmd = builder.buildCommand(env);
...
List<String> bashCmd = prepareBashCommand(cmd, env);
for (String c : bashCmd) {
System.out.print(c);
System.out.print('\0');
}
...
注释:其中会调用SparkSubmitCommandBuilder来生成Spark Submit命令,具体如下:
org.apache.spark.launcher.SparkSubmitCommandBuilder
... private List<String> buildSparkSubmitCommand(Map<String, String> env)
...
addOptionString(cmd, System.getenv("SPARK_SUBMIT_OPTS"));
addOptionString(cmd, System.getenv("SPARK_JAVA_OPTS"));
...
String driverExtraJavaOptions = config.get(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS);
...
if (isClientMode) {
...
addOptionString(cmd, driverExtraJavaOptions);
...
}
... addPermGenSizeOpt(cmd); cmd.add("org.apache.spark.deploy.SparkSubmit"); cmd.addAll(buildSparkSubmitArgs()); return cmd; ...
注释:这里创建了本地命令,其中java class:org.apache.spark.deploy.SparkSubmit,同时会把各种JavaOptions放到启动命令里(比如SPARK_JAVA_OPTS,DRIVER_EXTRA_JAVA_OPTIONS等),具体如下:
org.apache.spark.deploy.SparkSubmit
def main(args: Array[String]): Unit = {
val appArgs = new SparkSubmitArguments(args) //parse command line parameter
if (appArgs.verbose) {
// scalastyle:off println
printStream.println(appArgs)
// scalastyle:on println
}
appArgs.action match {
case SparkSubmitAction.SUBMIT => submit(appArgs)
case SparkSubmitAction.KILL => kill(appArgs)
case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)
}
}
private def submit(args: SparkSubmitArguments): Unit = {
val (childArgs, childClasspath, sysProps, childMainClass) = prepareSubmitEnvironment(args) //merge all parameters from: command line, properties file, system property, etc...
def doRunMain(): Unit = {
...
runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose)
...
}
...
private[deploy] def prepareSubmitEnvironment(args: SparkSubmitArguments)
: (Seq[String], Seq[String], Map[String, String], String) = {
if (deployMode == CLIENT || isYarnCluster) {
childMainClass = args.mainClass
...
if (isYarnCluster) {
childMainClass = "org.apache.spark.deploy.yarn.Client"
...
private def runMain(
childArgs: Seq[String],
childClasspath: Seq[String],
sysProps: Map[String, String],
childMainClass: String,
verbose: Boolean): Unit = {
// scalastyle:off println
if (verbose) {
printStream.println(s"Main class:\n$childMainClass")
printStream.println(s"Arguments:\n${childArgs.mkString("\n")}")
printStream.println(s"System properties:\n${sysProps.mkString("\n")}")
printStream.println(s"Classpath elements:\n${childClasspath.mkString("\n")}")
printStream.println("\n")
}
// scalastyle:on println
val loader =
if (sysProps.getOrElse("spark.driver.userClassPathFirst", "false").toBoolean) {
new ChildFirstURLClassLoader(new Array[URL](0),
Thread.currentThread.getContextClassLoader)
} else {
new MutableURLClassLoader(new Array[URL](0),
Thread.currentThread.getContextClassLoader)
}
Thread.currentThread.setContextClassLoader(loader)
for (jar <- childClasspath) {
addJarToClasspath(jar, loader)
}
for ((key, value) <- sysProps) {
System.setProperty(key, value)
}
var mainClass: Class[_] = null
try {
mainClass = Utils.classForName(childMainClass)
} catch {
...
val mainMethod = mainClass.getMethod("main", new Array[String](0).getClass)
...
mainMethod.invoke(null, childArgs.toArray)
...
注释:这里首先会解析命令行参数,比如mainClass,准备运行环境包括System Property以及classpath等,然后使用一个新的classloader:ChildFirstURLClassLoader来加载用户的mainClass,然后反射调用mainClass的main方法,这样用户的app.package.AppClass的main方法就开始执行了。
org.apache.spark.SparkConf
class SparkConf(loadDefaults: Boolean) extends Cloneable with Logging with Serializable {
import SparkConf._
/** Create a SparkConf that loads defaults from system properties and the classpath */
def this() = this(true)
...
if (loadDefaults) {
loadFromSystemProperties(false)
}
private[spark] def loadFromSystemProperties(silent: Boolean): SparkConf = {
// Load any spark.* system properties
for ((key, value) <- Utils.getSystemProperties if key.startsWith("spark.")) {
set(key, value, silent)
}
this
}
注释:这里可以看到spark是怎样加载配置的
1.2.3 --verbose
spark-submit --master local[*] --class app.package.AppClass --jars /$other-dir/other.jar --driver-memory 1g --verbose app-1.0.jar
输出示例:
Main class:
app.package.AppClass
Arguments:System properties:
spark.executor.logs.rolling.maxSize -> 1073741824
spark.driver.memory -> 1g
spark.driver.extraLibraryPath -> /$hadoop-dir/lib/native
spark.eventLog.enabled -> true
spark.eventLog.compress -> true
spark.executor.logs.rolling.time.interval -> daily
SPARK_SUBMIT -> true
spark.app.name -> app.package.AppClass
spark.driver.extraJavaOptions -> -XX:+PrintGCDetails -XX:+UseG1GC -XX:G1HeapRegionSize=32M -XX:+UseGCOverheadLimit -XX:+ExplicitGCInvokesConcurrent -XX:+HeapDumpOnOutOfMemoryError -XX:-UseCompressedClassPointers -XX:CompressedClassSpaceSize=3G -XX:+PrintGCTimeStamps -Xloggc:/export/Logs/hadoop/g1gc.log
spark.jars -> file:/$other-dir/other.jar
spark.sql.adaptive.enabled -> true
spark.submit.deployMode -> client
spark.executor.logs.rolling.maxRetainedFiles -> 10
spark.executor.extraClassPath -> /usr/lib/hadoop/lib/hadoop-lzo.jar
spark.eventLog.dir -> hdfs://myhdfs/spark/history
spark.master -> local[*]
spark.sql.crossJoin.enabled -> true
spark.driver.extraClassPath -> /usr/lib/hadoop/lib/hadoop-lzo.jar
Classpath elements:
file:/$other-dir/other.jar
file:/app-1.0.jar
启动时添加--verbose参数后,可以输出所有的运行时信息,有助于判断问题。
【原创】大数据基础之Spark(1)Spark Submit即Spark任务提交过程的更多相关文章
- 【原创】大数据基础之Zookeeper(2)源代码解析
核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...
- 【原创】大数据基础之Spark(6)Spark Rdd Sort实现原理
spark 2.1.1 spark中可以通过RDD.sortBy来对分布式数据进行排序,具体是如何实现的?来看代码: org.apache.spark.rdd.RDD /** * Return thi ...
- 【原创】大数据基础之Spark(2)Spark on Yarn:container memory allocation容器内存分配
spark 2.1.1 最近spark任务(spark on yarn)有一个报错 Diagnostics: Container [pid=5901,containerID=container_154 ...
- 【原创】大数据基础之Hive(5)hive on spark
hive 2.3.4 on spark 2.4.0 Hive on Spark provides Hive with the ability to utilize Apache Spark as it ...
- 【原创】大数据基础之Spark(9)spark部署方式yarn/mesos
1 下载解压 https://spark.apache.org/downloads.html $ wget http://mirrors.shu.edu.cn/apache/spark/spark-2 ...
- 大数据基础知识问答----spark篇,大数据生态圈
Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...
- 大数据与可靠性会碰撞出什么样的Spark?
可靠性工程领域的可靠性评估,可靠性仿真计算,健康检测与预管理(PHM)技术,可靠性试验,都需要大规模数据来进行支撑才能产生好的效果,以往这些数据都是不全并且收集困难,而随着互联网+的大数据时代的来临, ...
- 【原创】大数据基础之词频统计Word Count
对文件进行词频统计,是一个大数据领域的hello word级别的应用,来看下实现有多简单: 1 Linux单机处理 egrep -o "\b[[:alpha:]]+\b" test ...
- 【原创】大数据基础之Flink(1)简介、安装、使用
Flink 1.7 官方:https://flink.apache.org/ 一 简介 Apache Flink is an open source platform for distributed ...
随机推荐
- Gruntfile.js模板
module.exports = function(grunt) { // 配置项 var AppConfig = { name: 'app', //源文件目录 src: 'app/src', //生 ...
- mpvue-Vant Weapp踩坑记
微信开发者工具:开发.调试和模拟运行微信小程序的最核心的工具了,所以必须安装 # 全局安装 vue-cli $ npm install --global vue-cli # 创建一个基于 mpvue- ...
- MD 的常用语法格式
参考资料:MarkDown 语言常用语法 注意:vscode 中,可以使用 ctrl + shift + v 进行预览: 一.标题 一般使用 # 来进行层级标识.共 6 个层级,再多不识别. # = ...
- react学习目录
前面的话 React是如今热门的两大前端框架之一,它设计思路独特,性能卓越,逻辑简单,受到了大量开发者的喜爱.Vue的基本思路是基于HTML模板的扩展,而React的基本思路是基于JS语言的扩展.由于 ...
- 【NLP】Conditional Language Models
Language Model estimates the probs that the sequences of words can be a sentence said by a human. Tr ...
- Docker 错误 docker: invalid reference format. 的解决
运行 docker run –it –v /dataset:/dataset –v /inference:/inference –v /result:/result floydhub/pytorch: ...
- 使pre的内容自动换行(转)
<pre> 元素可定义预格式化的文本.被包围在 pre 元素中的文本通常会保留空格和换行符.而文本也会呈现为等宽字体. <pre> 标签的一个常见应用就是用来表示计算机的源代码 ...
- Kubernetes之Pod 控制器
定义Pod的常用资源 pods.spec.containers - name <string> #containers 的名字 image <string> ...
- EF CodeFirst系列(1)---CodeFirst简单入门
1.什么是CodeFirst 从EF4.1开始,EF可以支持CodeFirst开发模式,这种开发模式特别适用于领域驱动设计(Domain Driven Design,大名鼎鼎的DDD).在CodeFi ...
- 2018-2019-2《Java程序设计》结对编程项目-四则运算 第一周 阶段性总结
码云链接 https://gitee.com/A5320/pair_programming_code 需求分析 实现一个命令行程序,要求: 1.自动生成小学四则运算题目(加.减.乘.除) 2.支持整数 ...