【原创】大数据基础之Spark(1)Spark Submit即Spark任务提交过程
Spark2.1.1
一 Spark Submit本地解析
1.1 现象
提交命令:
spark-submit --master local[10] --driver-memory 30g --class app.package.AppClass app-1.0.jar
进程:
hadoop 225653 0.0 0.0 11256 364 ? S Aug24 0:00 bash /$spark-dir/bin/spark-class org.apache.spark.deploy.SparkSubmit --master local[10] --driver-memory 30g --class app.package.AppClass app-1.0.jar
hadoop 225654 0.0 0.0 34424 2860 ? Sl Aug24 0:00 /$jdk_dir/bin/java -Xmx128m -cp /spark-dir/jars/* org.apache.spark.launcher.Main org.apache.spark.deploy.SparkSubmit --master local[10] --driver-memory 30g --class app.package.AppClass app-1.0.jar
1.2 执行过程
1.2.1 脚本执行
-bash-4.1$ cat bin/spark-submit
#!/usr/bin/env bash
if [ -z "${SPARK_HOME}" ]; then
source "$(dirname "$0")"/find-spark-home
fi# disable randomized hash for string in Python 3.3+
export PYTHONHASHSEED=0exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"
注释:这里执行了另一个脚本spark-class,具体如下:
-bash-4.1$ cat bin/spark-class
...
build_command() {
"$RUNNER" -Xmx128m -cp "$LAUNCH_CLASSPATH" org.apache.spark.launcher.Main "$@"
printf "%d\0" $?
}CMD=()
while IFS= read -d '' -r ARG; do
CMD+=("$ARG")
done < <(build_command "$@")...
CMD=("${CMD[@]:0:$LAST}")
exec "${CMD[@]}"
注释:这里执行java class: org.apache.spark.launcher.Main,并传入参数,具体如下:
1.2.2 代码执行
org.apache.spark.launcher.Main
... builder = new SparkSubmitCommandBuilder(help); ... List<String> cmd = builder.buildCommand(env); ... List<String> bashCmd = prepareBashCommand(cmd, env); for (String c : bashCmd) { System.out.print(c); System.out.print('\0'); } ...
注释:其中会调用SparkSubmitCommandBuilder来生成Spark Submit命令,具体如下:
org.apache.spark.launcher.SparkSubmitCommandBuilder
... private List<String> buildSparkSubmitCommand(Map<String, String> env)
...
addOptionString(cmd, System.getenv("SPARK_SUBMIT_OPTS"));
addOptionString(cmd, System.getenv("SPARK_JAVA_OPTS"));
...
String driverExtraJavaOptions = config.get(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS);
...
if (isClientMode) {
...
addOptionString(cmd, driverExtraJavaOptions);
...
}
... addPermGenSizeOpt(cmd); cmd.add("org.apache.spark.deploy.SparkSubmit"); cmd.addAll(buildSparkSubmitArgs()); return cmd; ...
注释:这里创建了本地命令,其中java class:org.apache.spark.deploy.SparkSubmit,同时会把各种JavaOptions放到启动命令里(比如SPARK_JAVA_OPTS,DRIVER_EXTRA_JAVA_OPTIONS等),具体如下:
org.apache.spark.deploy.SparkSubmit
def main(args: Array[String]): Unit = { val appArgs = new SparkSubmitArguments(args) //parse command line parameter if (appArgs.verbose) { // scalastyle:off println printStream.println(appArgs) // scalastyle:on println } appArgs.action match { case SparkSubmitAction.SUBMIT => submit(appArgs) case SparkSubmitAction.KILL => kill(appArgs) case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs) } } private def submit(args: SparkSubmitArguments): Unit = { val (childArgs, childClasspath, sysProps, childMainClass) = prepareSubmitEnvironment(args) //merge all parameters from: command line, properties file, system property, etc... def doRunMain(): Unit = { ... runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose) ... } ... private[deploy] def prepareSubmitEnvironment(args: SparkSubmitArguments) : (Seq[String], Seq[String], Map[String, String], String) = { if (deployMode == CLIENT || isYarnCluster) { childMainClass = args.mainClass ... if (isYarnCluster) { childMainClass = "org.apache.spark.deploy.yarn.Client" ... private def runMain( childArgs: Seq[String], childClasspath: Seq[String], sysProps: Map[String, String], childMainClass: String, verbose: Boolean): Unit = { // scalastyle:off println if (verbose) { printStream.println(s"Main class:\n$childMainClass") printStream.println(s"Arguments:\n${childArgs.mkString("\n")}") printStream.println(s"System properties:\n${sysProps.mkString("\n")}") printStream.println(s"Classpath elements:\n${childClasspath.mkString("\n")}") printStream.println("\n") } // scalastyle:on println val loader = if (sysProps.getOrElse("spark.driver.userClassPathFirst", "false").toBoolean) { new ChildFirstURLClassLoader(new Array[URL](0), Thread.currentThread.getContextClassLoader) } else { new MutableURLClassLoader(new Array[URL](0), Thread.currentThread.getContextClassLoader) } Thread.currentThread.setContextClassLoader(loader) for (jar <- childClasspath) { addJarToClasspath(jar, loader) } for ((key, value) <- sysProps) { System.setProperty(key, value) } var mainClass: Class[_] = null try { mainClass = Utils.classForName(childMainClass) } catch { ... val mainMethod = mainClass.getMethod("main", new Array[String](0).getClass) ... mainMethod.invoke(null, childArgs.toArray) ...
注释:这里首先会解析命令行参数,比如mainClass,准备运行环境包括System Property以及classpath等,然后使用一个新的classloader:ChildFirstURLClassLoader来加载用户的mainClass,然后反射调用mainClass的main方法,这样用户的app.package.AppClass的main方法就开始执行了。
org.apache.spark.SparkConf
class SparkConf(loadDefaults: Boolean) extends Cloneable with Logging with Serializable { import SparkConf._ /** Create a SparkConf that loads defaults from system properties and the classpath */ def this() = this(true) ... if (loadDefaults) { loadFromSystemProperties(false) } private[spark] def loadFromSystemProperties(silent: Boolean): SparkConf = { // Load any spark.* system properties for ((key, value) <- Utils.getSystemProperties if key.startsWith("spark.")) { set(key, value, silent) } this }
注释:这里可以看到spark是怎样加载配置的
1.2.3 --verbose
spark-submit --master local[*] --class app.package.AppClass --jars /$other-dir/other.jar --driver-memory 1g --verbose app-1.0.jar
输出示例:
Main class:
app.package.AppClass
Arguments:System properties:
spark.executor.logs.rolling.maxSize -> 1073741824
spark.driver.memory -> 1g
spark.driver.extraLibraryPath -> /$hadoop-dir/lib/native
spark.eventLog.enabled -> true
spark.eventLog.compress -> true
spark.executor.logs.rolling.time.interval -> daily
SPARK_SUBMIT -> true
spark.app.name -> app.package.AppClass
spark.driver.extraJavaOptions -> -XX:+PrintGCDetails -XX:+UseG1GC -XX:G1HeapRegionSize=32M -XX:+UseGCOverheadLimit -XX:+ExplicitGCInvokesConcurrent -XX:+HeapDumpOnOutOfMemoryError -XX:-UseCompressedClassPointers -XX:CompressedClassSpaceSize=3G -XX:+PrintGCTimeStamps -Xloggc:/export/Logs/hadoop/g1gc.log
spark.jars -> file:/$other-dir/other.jar
spark.sql.adaptive.enabled -> true
spark.submit.deployMode -> client
spark.executor.logs.rolling.maxRetainedFiles -> 10
spark.executor.extraClassPath -> /usr/lib/hadoop/lib/hadoop-lzo.jar
spark.eventLog.dir -> hdfs://myhdfs/spark/history
spark.master -> local[*]
spark.sql.crossJoin.enabled -> true
spark.driver.extraClassPath -> /usr/lib/hadoop/lib/hadoop-lzo.jar
Classpath elements:
file:/$other-dir/other.jar
file:/app-1.0.jar
启动时添加--verbose参数后,可以输出所有的运行时信息,有助于判断问题。
【原创】大数据基础之Spark(1)Spark Submit即Spark任务提交过程的更多相关文章
- 【原创】大数据基础之Zookeeper(2)源代码解析
核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...
- 【原创】大数据基础之Spark(6)Spark Rdd Sort实现原理
spark 2.1.1 spark中可以通过RDD.sortBy来对分布式数据进行排序,具体是如何实现的?来看代码: org.apache.spark.rdd.RDD /** * Return thi ...
- 【原创】大数据基础之Spark(2)Spark on Yarn:container memory allocation容器内存分配
spark 2.1.1 最近spark任务(spark on yarn)有一个报错 Diagnostics: Container [pid=5901,containerID=container_154 ...
- 【原创】大数据基础之Hive(5)hive on spark
hive 2.3.4 on spark 2.4.0 Hive on Spark provides Hive with the ability to utilize Apache Spark as it ...
- 【原创】大数据基础之Spark(9)spark部署方式yarn/mesos
1 下载解压 https://spark.apache.org/downloads.html $ wget http://mirrors.shu.edu.cn/apache/spark/spark-2 ...
- 大数据基础知识问答----spark篇,大数据生态圈
Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...
- 大数据与可靠性会碰撞出什么样的Spark?
可靠性工程领域的可靠性评估,可靠性仿真计算,健康检测与预管理(PHM)技术,可靠性试验,都需要大规模数据来进行支撑才能产生好的效果,以往这些数据都是不全并且收集困难,而随着互联网+的大数据时代的来临, ...
- 【原创】大数据基础之词频统计Word Count
对文件进行词频统计,是一个大数据领域的hello word级别的应用,来看下实现有多简单: 1 Linux单机处理 egrep -o "\b[[:alpha:]]+\b" test ...
- 【原创】大数据基础之Flink(1)简介、安装、使用
Flink 1.7 官方:https://flink.apache.org/ 一 简介 Apache Flink is an open source platform for distributed ...
随机推荐
- 固件远程更新之STARTUPE2原语(fpga控制flash)
作者:九章子 来源:CSDN 原文:https://blog.csdn.net/jiuzhangzi/article/details/79471365 有的项目需要远程更新固件,更新完成后断电.重启即 ...
- 剖析height百分比和min-height百分比
height的百分比 当我们给块元素设置百分比高度时,往往没能看到效果.因为百分比的大小是相对其最近的父级元素的高的大小,也就是说,其最近的父级元素应该有一个明确的高度值才能使其百分比高度生效. &l ...
- Linux operating system basic knowleadge
1.Linux目录系统结构 It makes sense to explore the Linux filesystem from a terminal window. In fact, that ...
- 利用JDBC工具类 模拟用户登录!
一.建库 设置 id为主键并自增! 二.定义登录接口 package com.aaa.dao; public interface IDengDao { /* 1.定义一个登陆的接口,参数是name 和 ...
- 如何升级centos到最新版本
本文将教你如何升级centos到最新版本.centos中“update”命令可以一次性更新所有软件到最新版本.注意:不推荐使用update的y选项,-y选项会让你在安装每项更新前都进行确认(译者注:这 ...
- aop通知加参数的匹配规则
- 第六十九天 dom与bom
1.节点 dom与bom属 // DOM:文档对象模型 =>提高给用户操作document obj的标准接口 // DOM:以document为根,树状展开所有子节点 节点分类 // 节点分类: ...
- Redis DeskTop Manager 使用教程
redis desktop manager windows 是一款能够跨平台使用的开源性redis可视化工具. redis desktop manager主要针对redis开发设计,拥有直观强大的可视 ...
- MT【316】常数变易法
已知数列$\{a_n\}$满足$a_1=0,a_{n+1}=\dfrac{n+2}{n}a_n+1$,求$a_n$ 解答:$\dfrac{a_{n+1}}{n(n+1)}=\dfrac{a_n}{n( ...
- 用expect实现SCP/SSH自动输入密码登录
在命令行ssh远程登录服务器和scp远程传输文件都需要交互式输入密码,无法像mysql登录数据库 mysql -uroot -p123456一样直接完成. 其实可以用脚本依赖expect来达到这一目的 ...