洛谷P1439 【模板】最长公共子序列
题目描述
给出1-n的两个排列P1和P2,求它们的最长公共子序列。
输入输出格式
输入格式:
第一行是一个数n,
接下来两行,每行为n个数,为自然数1-n的一个排列。
输出格式:
一个数,即最长公共子序列的长度
输入输出样例
说明
【数据规模】
对于50%的数据,n≤1000
对于100%的数据,n≤100000
****复杂度为nlogn哦,离散化,然后求最长上升序列
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int i,j,n,a[],b[],ans,c[],f[];
int main()
{
scanf("%d",&n);
for(i = ;i <= n;i++)
{
scanf("%d",&a[i]);
c[a[i]] = i; //用于离散化
}
for(i = ;i <= n;i++)
{
scanf("%d",&b[i]);
f[i] = 0x7ffffff;
}
f[] = ;
ans = ;
for(i = ;i <= n;i++)
{
int l = ,r = ans,mid;
if(c[b[i]] > f[ans]) //求最大上升子序列
{
ans++;
f[ans] = c[b[i]];
}
else
{
while(l < r)
{
mid = (l + r) / ;
if(f[mid] > c[b[i]])
r = mid;
else
l = mid + ;
}
f[l] = min(f[l],c[b[i]]); // 求最大上升子序列长度为l时的最后一个值越小越好
}
}
printf("%d",ans);
return ;
}
洛谷P1439 【模板】最长公共子序列的更多相关文章
- 洛谷1439:最长公共子序列(nlogn做法)
洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...
- 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)
洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...
- 洛谷 P2516 [HAOI2010]最长公共子序列
题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由 ...
- 洛谷P2516 [HAOI2010]最长公共子序列
题目描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X="x0,x1,-,xm-1",序列Y=& ...
- 【Luogu P1439】最长公共子序列(LCS)
Luogu P1439 令f[i][j]表示a的前i个元素与b的前j个元素的最长公共子序列 可以得到状态转移方程: if (a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1; d ...
- 洛谷 P4484 - [BJWC2018]最长上升子序列(状压 dp+打表)
洛谷题面传送门 首先看到 LIS 我们可以想到它的 \(\infty\) 种求法(bushi),但是对于此题而言,既然题目出这样一个数据范围,硬要暴搜过去也不太现实,因此我们需想到用某种奇奇怪怪的方式 ...
- 【洛谷P4309】最长上升子序列
题目大意:给定一个序列,初始为空.现在我们将 1 到 N 的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 题解:学会了 rope 操 ...
- 洛谷 P1439 【模板】最长公共子序列
\[传送门啦\] 题目描述 给出\(1-n\)的两个排列\(P1\)和\(P2\),求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数\(n\), 接下来两行,每行为\(n\)个数,为 ...
- 洛谷 P1439 【模板】最长公共子序列 题解
每日一题 day40 打卡 Analysis 因为两个序列都是1~n 的全排列,那么两个序列元素互异且相同,也就是说只是位置不同罢了,那么我们通过一个book数组将A序列的数字在B序列中的位置表示出来 ...
随机推荐
- maven 安装m2e 报错
Eclipse安装maven插件m2e m2e - http://m2eclipse.sonatype.org/sites/m2e m2e-extras - http://m2eclipse.sona ...
- 向日葵连CentOS
TeamViewer可以连CentOS,但TeamViewer最近老是提示“检测为商业用途”,5分钟就会自动断,用起来非常不爽,所以决定改用向日葵试下,向日葵目前的口碑也不错,更何况是国产软件,更要支 ...
- deepin Gtk-WARNING **: 无法在模块路径中找到主题引擎:“adwaita”
虽然没影响使用,但是看着有点不爽. 执行 sudo apt-get install gnome-themes-standard 就可以了.
- jquery serializeArray()、serialize()增加数据
转自:http://blog.csdn.net/csdnzhangtao5/article/details/52981541 serialize().serializeArray()方法都是jquer ...
- js 计算两个时间戳之间相隔天数
var start=1491789600000;//2017-4-10 10:00 var end=1494381600000;//2017-5-10 10:00 var utc=end-start; ...
- [C++ Primer Plus] 第11章、使用类(一)程序清单——重载 P408
程序清单11.4~11.6(运算符重载——添加加法运算符) //1.h class Time { private: int hours; int minutes; public: Time(); Ti ...
- Eclipse/MyEclipse导入导出注释模板
1.Eclipse/MyEclipse导入注释模板 (1)打开Eclipse/MyEclipse工具,打开或创建一个Java工程,点击菜单Window->Preferences弹出首选项设置窗口 ...
- Catalog of Patterns of Enterprise Application Architecture
Catalog of Patterns of Enterprise Application Architecture Last Significant Update: January 2003 A s ...
- 论文笔记:Auto-ReID: Searching for a Part-aware ConvNet for Person Re-Identification
Auto-ReID: Searching for a Part-aware ConvNet for Person Re-Identification 2019-03-26 15:27:10 Paper ...
- jsp servlet table 集合list 数据 绑定
删除 前端