Riding in a Lift

CodeForces - 479E

Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let's number the floors from bottom to top with integers from 1 to n. Now you're on the floor number a. You are very bored, so you want to take the lift. Floor number b has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.

Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y ≠ x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen ymust be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|. After the lift successfully transports you to floor y, you write down number y in your notepad.

Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).

Input

The first line of the input contains four space-separated integers nabk (2 ≤ n ≤ 5000, 1 ≤ k ≤ 5000, 1 ≤ a, b ≤ na ≠ b).

Output

Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).

Examples

Input
5 2 4 1
Output
2
Input
5 2 4 2
Output
2
Input
5 3 4 1
Output
0

Note

Two sequences p1, p2, ..., pk and q1, q2, ..., qk are distinct, if there is such integer j (1 ≤ j ≤ k), that pj ≠ qj.

Notes to the samples:

  1. In the first sample after the first trip you are either on floor 1, or on floor 3, because |1 - 2| < |2 - 4| and |3 - 2| < |2 - 4|.
  2. In the second sample there are two possible sequences: (1, 2); (1, 3). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip.
  3. In the third sample there are no sought sequences, because you cannot choose the floor for the first trip.

sol:非常水的dp,直接转移是n3的,但是智障选手比方说我写了数据结构优化(树状数组),可以做到n2logn,但是还是TLE了,然后想了一会发现自己脑抽了,直接差分就是n2

然后悲伤的T了两发

#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline int read()
{
int s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(int x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=,Mod=;
int n,a,b,m;
int dp[N][N];
inline void Ad(int &x,int y)
{
x+=y;
x-=(x>=Mod)?Mod:;
x+=(x<)?Mod:;
}
struct BIT
{
int S[N];
#define lowbit(x) ((x)&(-x))
inline void Init()
{
memset(S,,sizeof S);
}
inline void Ins(int x,int Val)
{
for(;x<=n;x+=lowbit(x))
{
Ad(S[x],Val);
}
}
inline void Updata(int l,int r,int Val)
{
Ins(l,Val); Ins(r+,-*Val);
}
inline int Que(int x)
{
int Sum=;
for(;x>;x-=lowbit(x))
{
Ad(Sum,S[x]);
}
return Sum;
}
}T;
int S[N];
int main()
{
int i,j,k;
R(n); R(a); R(b); R(m);
dp[a][]=;
for(i=;i<m;i++)
{
// T.Init();
for(j=;j<=n;j++) if(dp[j][i])
{
int oo=abs(j-b)-;
// if(max(1,j-oo)<=j-1) T.Updata(max(1,j-oo),j-1,dp[j][i]);
// if(j+1<=min(n,j+oo)) T.Updata(j+1,min(n,j+oo),dp[j][i]);
if(max(,j-oo)<=j-)
{
Ad(dp[max(,j-oo)][i+],dp[j][i]); Ad(dp[j-+][i+],-*dp[j][i]);
}
if(j+<=min(n,j+oo))
{
Ad(dp[j+][i+],dp[j][i]); Ad(dp[min(n,j+oo)+][i+],-*dp[j][i]);
}
}
for(j=;j<=n;j++) Ad(dp[j][i+],dp[j-][i+]);
// for(j=1;j<=n;j++) dp[j][i+1]=T.Que(j);
}
int ans=;
for(i=;i<=n;i++) Ad(ans,dp[i][m]);
Wl(ans);
return ;
}
/*
Input
5 2 4 1
Output
2 Input
5 2 4 2
Output
2 Input
5 3 4 1
Output
0 input
2222 1206 1425 2222
output
402572650 Input
5000 2500 1 5000
Output
898026985
*/

codeforces479E的更多相关文章

随机推荐

  1. JS的arguments

    arguments对象:当前函数内置的全局属性,表示当前函数的所有参数的集合可以用来检测函数实参的个数 使用环境:当函数的参数个数无法确定时,使用arguments 写一个函数输出arguments看 ...

  2. [ArcGIS API for JavaScript 4.8] Sample Code-Get Started-widgets简介

    [官方文档:https://developers.arcgis.com/javascript/latest/sample-code/intro-widgets/index.html] 一.Intro ...

  3. SpringBoot 配置定时任务

    SpringBoot启用定时任务,其内部集成了成熟的框架,因此我们可以很简单的使用它. 开启定时任务 @SpringBootApplication //设置扫描的组件的包 @ComponentScan ...

  4. Linux系统下 MySQL 安装 指南(5.7和8.0 版本)

    一. 准备工作 1 删除本地centos7中的mariadb: 查看系统中是否已安装 mariadb 服务: rpm -qa | grep mariadb 或 yum list installed | ...

  5. 高端内存映射之kmap_atomic固定映射--Linux内存管理(二十一)

    1 固定映射 1.1 数据结构 linux高端内存中的临时内存区为固定内存区的一部分, 对于固定内存在linux内核中有下面描述 x86 arm arm64 arch/x86/include/asm/ ...

  6. Python安装包:协程(gevent)

  7. yuan 老师 之 Django

    前端: 1.前端基础之JavaScript https://www.cnblogs.com/yuanchenqi/articles/6893904.html 2.前端基础之jQuery https:/ ...

  8. Java中的CAS原理

    前言:在对AQS框架进行分析的过程中发现了很多CAS操作,因此有必要对CAS进行一个梳理,也便更清楚的了解其原理. 1.CAS是什么 CAS,是compare and swap的缩写,中文含义:比较交 ...

  9. 前端学习-基础部分-HTML

    开始今日份整理 1.HTML基础标签 1.1 标签 标签格式 HTML规定用英文尖括号,<>包起来,例如<html> HTML中通常标签成对出现,分为开始标签与结束标签,结束标 ...

  10. python中的struct模块的学习

    由于TCP协议中的黏包现象的发生,对于最low的办法,每次发送之前让他睡一秒,然后在发送,可是这样真的太low了,而且太占用资源了. 黏包现象只发生在tcp协议中: 1.从表面上看,黏包问题主要是因为 ...