codeforces479E
Riding in a Lift
Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let's number the floors from bottom to top with integers from 1 to n. Now you're on the floor number a. You are very bored, so you want to take the lift. Floor number b has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.
Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y ≠ x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen ymust be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|. After the lift successfully transports you to floor y, you write down number y in your notepad.
Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).
Input
The first line of the input contains four space-separated integers n, a, b, k (2 ≤ n ≤ 5000, 1 ≤ k ≤ 5000, 1 ≤ a, b ≤ n, a ≠ b).
Output
Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).
Examples
5 2 4 1
2
5 2 4 2
2
5 3 4 1
0
Note
Two sequences p1, p2, ..., pk and q1, q2, ..., qk are distinct, if there is such integer j (1 ≤ j ≤ k), that pj ≠ qj.
Notes to the samples:
- In the first sample after the first trip you are either on floor 1, or on floor 3, because |1 - 2| < |2 - 4| and |3 - 2| < |2 - 4|.
- In the second sample there are two possible sequences: (1, 2); (1, 3). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip.
- In the third sample there are no sought sequences, because you cannot choose the floor for the first trip.
sol:非常水的dp,直接转移是n3的,但是智障选手比方说我写了数据结构优化(树状数组),可以做到n2logn,但是还是TLE了,然后想了一会发现自己脑抽了,直接差分就是n2了
然后悲伤的T了两发

#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline int read()
{
int s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(int x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=,Mod=;
int n,a,b,m;
int dp[N][N];
inline void Ad(int &x,int y)
{
x+=y;
x-=(x>=Mod)?Mod:;
x+=(x<)?Mod:;
}
struct BIT
{
int S[N];
#define lowbit(x) ((x)&(-x))
inline void Init()
{
memset(S,,sizeof S);
}
inline void Ins(int x,int Val)
{
for(;x<=n;x+=lowbit(x))
{
Ad(S[x],Val);
}
}
inline void Updata(int l,int r,int Val)
{
Ins(l,Val); Ins(r+,-*Val);
}
inline int Que(int x)
{
int Sum=;
for(;x>;x-=lowbit(x))
{
Ad(Sum,S[x]);
}
return Sum;
}
}T;
int S[N];
int main()
{
int i,j,k;
R(n); R(a); R(b); R(m);
dp[a][]=;
for(i=;i<m;i++)
{
// T.Init();
for(j=;j<=n;j++) if(dp[j][i])
{
int oo=abs(j-b)-;
// if(max(1,j-oo)<=j-1) T.Updata(max(1,j-oo),j-1,dp[j][i]);
// if(j+1<=min(n,j+oo)) T.Updata(j+1,min(n,j+oo),dp[j][i]);
if(max(,j-oo)<=j-)
{
Ad(dp[max(,j-oo)][i+],dp[j][i]); Ad(dp[j-+][i+],-*dp[j][i]);
}
if(j+<=min(n,j+oo))
{
Ad(dp[j+][i+],dp[j][i]); Ad(dp[min(n,j+oo)+][i+],-*dp[j][i]);
}
}
for(j=;j<=n;j++) Ad(dp[j][i+],dp[j-][i+]);
// for(j=1;j<=n;j++) dp[j][i+1]=T.Que(j);
}
int ans=;
for(i=;i<=n;i++) Ad(ans,dp[i][m]);
Wl(ans);
return ;
}
/*
Input
5 2 4 1
Output
2 Input
5 2 4 2
Output
2 Input
5 3 4 1
Output
0 input
2222 1206 1425 2222
output
402572650 Input
5000 2500 1 5000
Output
898026985
*/
codeforces479E的更多相关文章
随机推荐
- 浏览器与Node的事件循环(Event Loop)有何区别?
前言 本文我们将会介绍 JS 实现异步的原理,并且了解了在浏览器和 Node 中 Event Loop 其实是不相同的. 一.线程与进程 1. 概念 我们经常说 JS 是单线程执行的,指的是一个进程里 ...
- 微信小程序---require()
我们可以通过require()来获取其它文件导出的数据,但要注意的是传给require的路径只能是相对路径. // 获取指定页面通过module.exports导出的数据 var postsData ...
- 快速数论变换(NTT)小结
NTT 在FFT中,我们需要用到复数,复数虽然很神奇,但是它也有自己的局限性--需要用double类型计算,精度太低 那有没有什么东西能够代替复数且解决精度问题呢? 这个东西,叫原根 原根 阶 若\( ...
- Mysql表分区的选择与实践小结
在一些系统中有时某张表会出现百万或者千万的数据量,尽管其中使用了索引,查询速度也不一定会很快.这时候可能就需要通过分库,分表,分区来解决这些性能瓶颈. 一. 选择合适的解决方法 1. 分库分表. 分库 ...
- 从0开始的Python学习001快速上手手册
假设大家已经安装好python的环境了. Windows检查是否可以运行python脚本 Ctrl+R 输入 cmd 在命令行中输入python 如果出现下面结果,我们就可以开始python的学习了. ...
- iOS pthread
pthread 是属于 POSIX 多线程开发框架 创建线程的方法:pthread_create 参数含义: 1.指向线程代号的指针 2.线程的属性 3.指向函数的指针 4.传递给该函数的参数 返 ...
- git add 添加多个文件
在使用git add提交多个文件的方式: git add . 后面加一个".",匹配所有的文件 总结下,提交多个文件时,git add后可以有如下参数以及参数的解释: git ...
- 【PAT】B1018 锤子剪刀布
抄的柳婼小姐姐的,感觉三个数求最大那里用的真棒 #include <stdio.h> int main() { int N; scanf("%d", &N); ...
- SQLServer之创建LOGON触发器
LOGON触发器工作原理 登录触发器将为响应 LOGON 事件而激发存储过程. 与 SQL Server实例建立用户会话时将引发此事件. 登录触发器将在登录的身份验证阶段完成之后且用户会话实际建立之前 ...
- LeetCode算法题-Construct String from Binary Tree(Java实现)
这是悦乐书的第273次更新,第288篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第141题(顺位题号是606).构造一个字符串,该字符串由二叉树中的括号和整数组成,并具 ...