[模板] 杜教筛 && bzoj3944-Sum
杜教筛
浅谈一类积性函数的前缀和 - skywalkert's space - CSDN博客
杜教筛可以在\(O(n^{\frac 23})\)的时间复杂度内利用卷积求出一些积性函数的前缀和.
算法
给定\(f(n)\), 现要求\(S(n)=\sum_{i=1}^n f(i)\).
定义卷积运算 \((f*g)(n) = \sum_{d | n} f(d) g(\frac{n}{d})\).
如果存在\(g(n)\), 满足\(f*g=h\), 且\(g\)和\(h\)都能 \(O(1)\) 求出前缀和, 我们可以较快地求出\(S(n)\).
注意到
\sum\limits_{i=1}^{n}(f*g)(i) &= \sum\limits_{i=1}^{n} \sum \limits _{d|i} f(d)g(\frac{i}{d}) \\
&= \sum \limits _{d=1}^{n} g(d)\sum\limits _{i=1}^{\lfloor \frac{n}{d}\rfloor } f(i) \\
&= \sum \limits _{d=1}^{n} g(d) S(\lfloor \frac{n}{d} \rfloor) \end{aligned}
\]
因此, 有
\]
可以递归(并记忆化)下去.
对于复杂度: 展开一层递归, 通过积分可以求出时间复杂度为 \(O(n^{\frac 34})\).
如果预处理前 \(m\) 个答案, 利用同样的方法可以得到复杂度为 \(O(m + \frac n{\sqrt m})\), 当 \(m = n^{\frac 23}\) 时取最小值为 \(O(n^{\frac 23})\).
并不知道为什么算复杂度时可以只展开一层
Upd: 关于为什么算复杂度时只展开一层:
递归的 \(x\) 显然为 \(\lfloor \frac ni \rfloor\) 的形式, 可以通过哈希表(或者下面的另一种方法)存储. 那么递归到第二层的时候会发现要求的值已经求过了, 因此只需展开一层就行了.
关于卷积
显然, 卷积运算满足交换律和结合律, 可以推式子验证一下.
另外, 积性函数的卷积仍然为积性函数.
定义函数 \(\epsilon(n) = [n=1], I(n) = 1, id(n) = n\), 有
\]
这是\(\epsilon\)函数的定义.
\]
\]
这是莫比乌斯函数的定义.
\]
\]
\]
Problem Description
求 \(\phi (n)\) 和 \(\mu (n)\) 的前缀和. \(1 \le n \le 2^{31}-1\).
Code
另外, 卡常数...
用long long会TLE, 改成unsigned int就不会.
似乎不少毒瘤数论题都卡常
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
#include<unordered_map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int uint;
//---------------------------------------
const int blsz=5e6+50,sqsz=5e4+50;
ll bnd=5e6;
ll t,n;
int nopr[blsz],pr[blsz],pp=0;
ll mu[blsz],phi[blsz];
void init(){
nopr[1]=mu[1]=phi[1]=1;//a
rep(i,2,bnd){
if(nopr[i]==0)pr[++pp]=i,mu[i]=-1,phi[i]=i-1;//b
rep(j,1,pp){
if(i*pr[j]>bnd)break;
nopr[i*pr[j]]=1;
if(i%pr[j])mu[i*pr[j]]=-mu[i],phi[i*pr[j]]=phi[i]*phi[pr[j]];
else{mu[i*pr[j]]=0,phi[i*pr[j]]=phi[i]*pr[j];break;}
}
}
rep(i,1,bnd)phi[i]+=phi[i-1],mu[i]+=mu[i-1];
}
//ll sq,vmu[n12sz*2],vphi[n12sz*2];
//ll tr(ll v){return v<}
unordered_map<uint,ll> ansmu,ansphi;
ll getphi(uint n){
if(n<=bnd)return phi[n];
ll &tmp=ansphi[n];
if(tmp)return tmp;
ull res=(ull)n*(n+1)/2;
for(uint l=2,r;l<=n;l=r+1){//using unsigned int instead of ll
r=n/(n/l);
res-=(ll)(r-l+1)*getphi(n/l);
}
return tmp=res;
}
ll getmu(uint n){
if(n<=bnd)return mu[n];
ll &tmp=ansmu[n];
if(tmp)return tmp;
tmp=1;
for(uint l=2,r;l<=n;l=r+1){
r=n/(n/l);
tmp-=(r-l+1)*getmu(n/l);
}
return tmp;
}
int main(){
// freopen("a.in","r",stdin);
ios::sync_with_stdio(0),cin.tie(0);
init();
cin>>t;
rep(cs,1,t){
cin>>n;
cout<<getphi(n)<<' '<<getmu(n)<<'\n';
}
return 0;
}
unordered_map的地方也可以换为
struct tmap{
ll a[sqsz],b[sqsz];
void cl(){memset(b,0,sizeof(b));}
ll& operator[](int p){
if(p<5e4)return a[p];
else return b[n/p];
}
}ansmu,ansphi;
但是并没有变快... 可能是unordered_map常数小吧...
[模板] 杜教筛 && bzoj3944-Sum的更多相关文章
- 杜教筛 && bzoj3944 Sum
Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans ...
- LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...
- Luogu 4213 【模板】杜教筛(Sum)
当作杜教筛的笔记吧. 杜教筛 要求一个积性函数$f(i)$的前缀和,现在这个东西并不是很好算,那么我们考虑让它卷上另外一个积性函数$g(i)$,使$(f * g)$的前缀和变得方便计算,然后再反推出这 ...
- luoguP4213 【模板】杜教筛(Sum)杜教筛
链接 luogu 思路 为了做hdu来学杜教筛. 杜教筛模板题. 卡常数,我加了register居然跑到不到800ms. 太深了. 代码 // luogu-judger-enable-o2 #incl ...
- [洛谷P4213]【模板】杜教筛(Sum)
题目大意:给你$n$,求:$$\sum\limits_{i=1}^n\varphi(i),\sum\limits_{i=1}^n\mu(i)$$最多$10$组数据,$n\leqslant2^{31}- ...
- P4213 【模板】杜教筛(Sum)
\(\color{#0066ff}{题 目 描 述}\) 给定一个正整数\(N(N\le2^{31}-1)\) 求 \(\begin{aligned} ans_1=\sum_{i=1}^n\varph ...
- 【模板】杜教筛(Sum)
传送门 Description 给定一个正整数\(N(N\le2^{31}-1)\) 求 \[ans1=\sum_{i=1}^n \varphi(i)\] \[ans_2=\sum_{i=1}^n \ ...
- P4213【模板】杜教筛(Sum)
思路:杜教筛 提交:\(2\)次 错因:\(\varphi(i)\)的前缀和用\(int\)存的 题解: 对于一类筛积性函数前缀和的问题,杜教筛可以以低于线性的时间复杂度来解决问题. 先要构造\(h= ...
- luoguP4213 [模板]杜教筛
https://www.luogu.org/problemnew/show/P4213 同 bzoj3944 考虑用杜教筛求出莫比乌斯函数前缀和,第二问随便过,第一问用莫比乌斯反演来做,中间的整除分块 ...
随机推荐
- input 图片上传,第二次上传同一张图片失效
<input type="file" onchange="angular.element(this).scope().addPhoto(this,event)&qu ...
- 轨迹系列7——Socket总结及实现基于TCP或UDP的809协议方法
文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景 在上一篇博客中我详细介绍了809协议的内容.809协议规范了通 ...
- SpringBoot集成mybatis配置
一个有趣的现象:传统企业大都喜欢使用hibernate,互联网行业通常使用mybatis:之所以出现这个问题感觉与对应的业务有关,比方说,互联网的业务更加的复杂,更加需要进行灵活性的处理,所以myba ...
- Android 解析标准的点击第三方文件管理器中的视频的intent
解析标准的第三方视频intent private List<String> mCurPlayList = new ArrayList<String>(); private in ...
- 从零学习Fluter(二):win10上环境搭建以及模拟器和真机调试
今天呢,又继续看了flutter 弗拉特 的东西,绝的这个东西绝对是比ReactNative更高一层次的,在2018年12月5好,flutter的第一个stale1.0发布了,我们在GitHub上可以 ...
- mssql sqlserver 指定特定值排在表前面
转自:http://www.maomao365.com/?p=7141 摘要: 下文讲述sql脚本编写中,将 特定值排在最前面的方法分享, 实验环境:sqlserver 2008 R2 例:将数据表中 ...
- Serverless架构
什么是Serverless架构 Servlerless 架构是新兴的架构体系,在Serverless 架构中,开发者无需考虑服务器的问题,计算资源作为服务而不是服务器的概念出现,这样,开发者只需要关注 ...
- 简单用数组模拟顺序栈(c++)
**栈是一种操作受限制的线性表,太多官方的话我也不说了,我们都知道栈元素是先进后出的,它有两种存储结构,分别是顺序存储结构和链式存储结构. **今天我先记一下顺序存储结构,后面我会加上链式存储结构的. ...
- Springboot配置文件解析器
@EnableScheduling @MapperScan(value = "com.****.dao") @EnableTransactionManagement @Enable ...
- Kerberos原理
前些日子为了搞清楚Kerberos原理,把MIT的Kerberos经典对话看了几遍,终于有了一个稍微清晰的认识,这里稍微记录下,因为Kerberos是使用传统加密技术实现的一个认证机制,所以顺便备忘下 ...