【UOJ#349】[WC2018] 即时战略
题意
一开始已知一号点。
每次可以选定一个已知点和一个未知点,然后交互库会返回从已知点出发到达未知点路径上的第二个点。
要求在有限步之内知道每一个点。
次数要求:
链的情况要求 \(O(n)\)
其余是 \(O(nlogn)\)
Sol
首先是链的情况,记录当前左右端点不断往后探索即可。
然后是树,初始想法肯定就是不断迭代,最坏情况是 \(O(n^2)\) 的。
我们的瓶颈在于如果树的深度比较大,我们迭代的时候来回走了很多个圈就不好处理。
那么我们很容易想到用点分树来优化我们迭代的过程。
于是动态维护点分树即可。
每次新加一个点的时候直接加入,向上更新点分树祖先的 \(size\) ,设定一个平衡因子,当当前子树大小过大时就把当前子树暴力重构一下。记录每一个点在点分树中的深度就很好做了。
code:
#include<bits/stdc++.h>
#include "rts.h"
using namespace std;
const int N=3e5+10;
namespace TP3{
int n;int lnow,rnow;bool del[N];int S[N];
void work(int _n){
n=_n;
lnow=rnow=1;for(int i=1;i<n;++i) S[i]=i+1;del[1]=1;
srand(time(NULL));random_shuffle(S+1,S+n);
for(int i=1;i<n;++i){
int now=lnow;bool f=0;
while(!del[S[i]]) {
int v=explore(now,S[i]);
if(del[v]) now=rnow,f=1;
else {
del[v]=1;now=v;
if(f==0) lnow=now;
else rnow=now;
}
}
if(rand()&1) swap(lnow,rnow);
}
return;
}
}
namespace Sol{
int n;
typedef double db;
const db alpha=0.7;
struct edge{int to,next;}a[N<<1];
int head[N],cnt=0;
inline void add(int x,int y){a[++cnt]=(edge){y,head[x]};head[x]=cnt;}
int fa[N],vis[N],size[N],f[N],que[N],had[N],mark[N],sz[N],dep[N];
int rt;int now,SZ,RT,UP;
void Find(int u,int fr){
sz[u]=1,f[u]=0;
for(int v,i=head[u];i;i=a[i].next){
v=a[i].to;if(v==fr||vis[v]) continue;
Find(v,u);sz[u]+=sz[v];
f[u]=max(f[u],sz[v]);
}
f[u]=max(f[u],SZ-sz[u]);
if(!RT||(f[u]<f[RT])) RT=u;
}
void Build(int u,int fr){
fa[u]=fr;size[u]=1;dep[u]=dep[fr]+1;vis[u]=1;
for(int v,i=head[u];i;i=a[i].next){
v=a[i].to;if(dep[v]<UP||vis[v]) continue;
RT=0;SZ=sz[v];Find(v,u);
int To=RT;Build(To,u);
size[u]+=size[To];
}
return;
}
void Clear(int u,int fa){
vis[u]=0,mark[u]=0;
for(int v,i=head[u];i;i=a[i].next){v=a[i].to;if(v==fa||dep[v]<UP) continue;Clear(v,u);}
return;
}
inline void Rebuild(int u){// 重构子树
SZ=size[u];UP=dep[u];RT=0;
Clear(u,0);Find(u,0);if(rt==u) rt=RT;
Build(RT,fa[u]);
return;
}
void Maintain(int u){// 向上更新点分树 size 并判断重构
if(!fa[u]) {if(mark[u]) Rebuild(u);return;}
++size[fa[u]];
if(size[fa[u]]*alpha<size[u]) mark[fa[u]]=1;
Maintain(fa[u]);
if(mark[u]) Rebuild(u);// 找到最上面需要重构的点
return;
}
void work(int _n){
n=_n;
for(int i=1;i<n;++i) que[i]=i+1;
srand(time(NULL));
random_shuffle(que+1,que+n);
had[1]=size[1]=vis[1]=rt=1,dep[1]=1;
int tot=1;
for(int i=1;i<n;++i) {
now=rt;
while(!had[que[i]]){
int p=explore(now,que[i]);
if(had[p]) {
while(now!=fa[p]) p=fa[p];now=p;
}
else {
++tot;had[p]=1;
add(now,p),add(p,now);
fa[p]=now,size[p]=1,vis[p]=1,dep[p]=dep[now]+1;
Maintain(p);now=p;
}
}
}
}
}
void play(int n, int T, int dataType) {
if(dataType==3) TP3::work(n);
else Sol::work(n);
}
【UOJ#349】[WC2018] 即时战略的更多相关文章
- [WC2018]即时战略——动态点分治(替罪羊式点分树)
题目链接: [WC2018]即时战略 题目大意:给一棵结构未知的树,初始时除1号点其他点都是黑色,1号点是白色,每次你可以询问一条起点为白色终点任意的路径,交互库会自动返回给你这条路径上与起点相邻的节 ...
- 「WC2018即时战略」
「WC2018即时战略」 题目描述 小 M 在玩一个即时战略 (Real Time Strategy) 游戏.不同于大多数同类游戏,这个游戏的地图是树形的.也就是说,地图可以用一个由 \(n\) 个结 ...
- [WC2018]即时战略(LCT,splay上二分)
[UOJ题面]http://uoj.ac/problem/349 一道非常好的与数据结构有关的交互题. 首先先看部分分做法, 一上来我们肯定得钦定一个 \(explore\) 的顺序,直接随机就好. ...
- WC2018 即时战略
交互题 一棵树,一开始只有 1 号点是已知的,其他的都是未知的,你可以调用函数 explore(x,y) ,其中 x 必须是已知的,函数会找到 x 到 y 路径上第二个点,并把它标成已知,求最小步数使 ...
- 【WC2018】即时战略(动态点分治,替罪羊树)
[WC2018]即时战略(动态点分治,替罪羊树) 题面 UOJ 题解 其实这题我也不知道应该怎么确定他到底用了啥.只是想法很类似就写上了QwQ. 首先链的部分都告诉你要特殊处理那就没有办法只能特殊处理 ...
- 【WC2018】即时战略
题目描述 小M在玩一个即时战略(Real Time Strategy)游戏.不同于大多数同类游戏,这个游戏的地图是树形的. 也就是说,地图可以用一个由 n个结点,n?1条边构成的连通图来表示.这些结点 ...
- 「WC2018」即时战略
「WC2018」即时战略 考虑对于一条链:直接随便找点,然后不断问即可. 对于一个二叉树,树高logn,直接随便找点,然后不断问即可. 正解: 先随便找到一个点,问出到1的路径 然后找别的点,考虑问出 ...
- loj2341「WC2018」即时战略(随机化,LCT/动态点分治)
loj2341「WC2018」即时战略(随机化,LCT/动态点分治) loj Luogu 题解时间 对于 $ datatype = 3 $ 的数据,explore操作次数只有 $ n+log n $ ...
- 【Unity3D】使用鼠标键盘控制Camera视角(即时战略类游戏视角):缩近,拉远,旋转
今天写一个demo,要用到鼠标键盘控制三维视角,因此写了个脚本用于控制. 该脚本可以用于即时战略类游戏的视角,提供了缩进,拉伸,旋转.同时按住鼠标右键不放,移动鼠标可以实现第一人称视角的效果. usi ...
随机推荐
- yarn.lock 是干什么的
概述 今天本地运行尤大的vue-hackernews-2.0,使用 yarn 命令安装,报错提示 node 版本必须大于7小于9,如下所示: error upath@1.0.4: The engine ...
- 阶段3 1.Mybatis_01.Mybatis课程介绍及环境搭建_07.环境搭建的注意事项
2 resources下面创建目录要一级一级的创建,下面这个创建的就是一级目录而不是三级 在文件夹下看到的目录也是一级的 因此这里创建目录需要一个个的去创建 配置文件和dao类这两个目录要保持一致,这 ...
- JDK7新特性
二进制字面量 数字字面量可以出现下划线 switch语句可以用字符串 泛型简化 异常的多个catch合并 try..with...resource语句 import java.io.FileReade ...
- oracle-不完全数据库恢复-被动恢复-RMAN-06025/ORA-01190
不完全数据库恢复 到目前为止,前面讨论的都是完全恢复数据库,这是recover database\recover tablespace\recover datafile默认的行为特征. 所谓完全恢复指 ...
- C# DES 加解密
using System; using System.Text; using System.Security.Cryptography; using System.Diagnostics; using ...
- 【HANA系列】SAP HANA数据处理的理解与分析一
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列]SAP HANA数据处理的理解与 ...
- 【MM系列】SAP OX09中的地址如何取
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP OX09中的地址如何取 ...
- 20191110 Spring Boot官方文档学习(3)
3.使用Spring Boot 3.1.构建系统 建议选择Maven或Gradle作为构建工具 每个Spring Boot版本都提供了它所支持的依赖关系的精选列表.实际上,您不需要为构建配置中的所有这 ...
- Java基础语法—流程控制语句
在一个程序执行的过程中,各条语句的执行顺序对程序的结果是有直接影响的.所以,我们必须清楚每条语句的执行流程.而且,很多时候要通过控制语句的执行顺序来实现我们想要的功能. 3.1 流程控制语句分类 ...
- .Net Core - 使用Supervisor进行托管部署
环境 CentOS 7 x64,详见 安装CentOS7虚拟机 .Net Core 2.1.801 详见 CentOS 7 下安装.NET Core SDK 2.1 ftp 详见 CentOS7 ...