题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=5118

题解

这个题一看就是不可做的样子。

求斐波那契数列的第 \(n\) 项,\(n \leq 2^{10^{15}}\)???

这样人怎么矩阵快速幂啊。


等等这个模数很神奇啊。

\(1125899839733759\) 好像是一个质数,还以 \(9\) 结尾。

那么 \(5\) 对于 \(1125899839733759\) 一定有二次剩余咯。

那么根据 Fib 的通项公式

\[f(n) = (\frac{\sqrt 5+1}{2})^n + (\frac{\sqrt 5 - 1}2)^n
\]

那么这个 \(2^n\) 就可以根据费马小定理就可以转化成 \(n \bmod P-1\) 了。

那么这个 \(2^n\) 的范围瞬间小了很多。

于是就可以直接矩阵快速幂了,注意乘法要用快速乘实现。


UPD: 发现好像傻掉了,都有通项公式了,还写什么矩阵快速幂。


时间复杂度 \(O(T\log^2 n)\)。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const ll P = 1125899839733759; ll n; inline void sadd(ll &x, ll y, const ll &P = ::P) { x += y; x >= P ? x -= P : x; }
inline ll smod(const ll &x, const ll &P = ::P) { return x >= P ? x - P : x; }
inline ll fmul(ll x, ll y, const ll &P = ::P) {
ll ans = 0;
for (; y; y >>= 1, sadd(x, x, P)) if (y & 1) sadd(ans, x, P);
return ans;
}
inline ll fpow(ll x, ll y, const ll &P = ::P) {
ll ans = 1;
for (; y; y >>= 1, x = fmul(x, x, P)) if (y & 1) ans = fmul(ans, x, P);
return ans;
} struct Matrix {
ll a[2][2]; inline Matrix() { memset(a, 0, sizeof(a)); }
inline Matrix(const ull &x) {
memset(a, 0, sizeof(a));
a[0][0] = a[1][1] = x;
} inline Matrix operator * (const Matrix &b) {
Matrix c;
c.a[0][0] = smod(fmul(a[0][0], b.a[0][0]) + fmul(a[0][1], b.a[1][0]));
c.a[0][1] = smod(fmul(a[0][0], b.a[0][1]) + fmul(a[0][1], b.a[1][1]));
c.a[1][0] = smod(fmul(a[1][0], b.a[0][0]) + fmul(a[1][1], b.a[1][0]));
c.a[1][1] = smod(fmul(a[1][0], b.a[0][1]) + fmul(a[1][1], b.a[1][1]));
return c;
}
} A, B; inline Matrix fpow(Matrix x, ll y) {
Matrix ans(1);
for (; y; y >>= 1, x = x * x) if (y & 1) ans = ans * x;
return ans;
} inline void work() {
A.a[0][0] = 1, A.a[0][1] = 1;
A.a[1][0] = 1, A.a[1][1] = 0;
B.a[0][0] = 0, B.a[1][0] = 1;
A = fpow(A, n) * B;
printf("%lld\n", A.a[0][0]);
} inline void init() {
read(n);
n = fpow(2, n, P - 1);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
int T;
read(T);
while (T--) {
init();
work();
}
fclose(stdin), fclose(stdout);
return 0;
}

bzoj5118 Fib数列2 二次剩余+矩阵快速幂的更多相关文章

  1. BZOJ5118 Fib数列2(矩阵快速幂)

    特殊矩阵的幂同样满足费马小定理. #include<iostream> #include<cstdio> #include<cmath> #include<c ...

  2. nyoj_148_fibonacci数列(二)_矩阵快速幂

    fibonacci数列(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 In the Fibonacci integer sequence, F0 = 0, F ...

  3. fibonacci数列(二)_矩阵快速幂

    描述 In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For exampl ...

  4. BZOJ5118: Fib数列2(二次剩余)

    题意 题目链接 题目链接 一种做法是直接用欧拉降幂算出\(2^p \pmod{p - 1}\)然后矩阵快速幂. 但是今天学习了一下二次剩余,也可以用通项公式+二次剩余做. 就是我们猜想\(5\)在这个 ...

  5. POJ3070 斐波那契数列递推 矩阵快速幂模板题

    题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include< ...

  6. Tribonacci UVA - 12470 (简单的斐波拉契数列)(矩阵快速幂)

    题意:a1=0;a2=1;a3=2; a(n)=a(n-1)+a(n-2)+a(n-3);  求a(n) 思路:矩阵快速幂 #include<cstdio> #include<cst ...

  7. BZOJ 3231: [Sdoi2008]递归数列 (JZYZOJ 1353) 矩阵快速幂

    http://www.lydsy.com/JudgeOnline/problem.php?id=3231   和斐波那契一个道理在最后加一个求和即可 #include<cstdio> #i ...

  8. HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submi ...

  9. hihocoder第42周 3*N骨牌覆盖(状态dp+矩阵快速幂)

    http://hihocoder.com/contest/hiho42/problem/1 给定一个n,问我们3*n的矩阵有多少种覆盖的方法 第41周做的骨牌覆盖是2*n的,状态转移方程是dp[i] ...

随机推荐

  1. VXcode学习

    1.安装中文包(chinese) 2.打开控制面板ctrl+shift+p

  2. SourceTree跳过初始设置

    转载https://www.cnblogs.com/xiofee/p/sourcetree_pass_initialization_setup.html 如何跳过初始设置,只需要在安装路径中添加一个a ...

  3. gsensor方向调试【转】

    本文转载自:http://blog.csdn.net/guoguo295/article/details/19545089 版权声明:本文为博主原创文章,未经博主允许不得转载. 以下说明主要是针对gs ...

  4. Java基础数据类型小结

    1.      记忆中的数据类型: 记忆中java一共有八种基础数据:boolean,byte,char,int,long,float,double,还有一种记不起来. 他们的长度分别为: 他们的用处 ...

  5. Django中间件添加白名单

     一定记得配置 补充一点中间件是工作流程 中间件的详细流程 补充一点需求:在不用中间件的情况和下用装饰器做登陆的阻挡 在django中有自带的 登陆闭包函数只需要引出来就可以直接用了下面是步骤 在se ...

  6. 《图解 CSS3 核心技术与案例实战》

    第一章 解开 CSS3 的面纱 使用 CSS3 的好处 减少开发和维护成本:如传统实现圆角边框需要绘图.切图才能完成,而使用 css 可以直接完成 提高页面性能 渐进增强(Progressive En ...

  7. Jmeter之完整的HTTP接口测试

    目前很多接口都是基于HTTP的,所以针对HTTP接口测试的了解很重要,下面就简单说明一下,一个基于Jmeter上HTTP接口测试需要的内容. 一.一个HTTP接口测试需要最基础的内容 如下: 简单说明 ...

  8. python中有哪些类型的布尔值是False?

    1.None 2. False 3.所有的值为零的数 4."" 5.[] 6.() 7.{}

  9. js-禁止长页面滚动

    标题的需求问题其实我经常遇到.尤其是在碰到页面同时出现有视频及弹层的情况. 当然我说的问题皆是针对微信H5开发的哈 IOS中,视频播放,弹层出现时,视频在弹层的下面,不会出现问题: 安卓手机中,完了, ...

  10. 数论-欧拉函数-LightOJ - 1370

    我是知道φ(n)=n-1,n为质数  的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...