[Luogu1220]关路灯

题目描述

某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。

为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。

现在已知老张走的速度为1m/s,每个路灯的位置(是一个整数,即距路线起点的距离,单位:m)、功率(W),老张关灯所用的时间很短而可以忽略不计。

请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。

输入输出格式

输入格式:

文件第一行是两个数字n(1<=n<=50,表示路灯的总数)和c(1<=c<=n老张所处位置的路灯号);

接下来n行,每行两个数据,表示第1盏到第n盏路灯的位置和功率。数据保证路灯位置单调递增。

输出格式:

一个数据,即最少的功耗(单位:J,1J=1W·s)。

输入输出样例

输入样例#1:

5 3

2 10

3 20

5 20

6 30

8 10

输出样例#1:

270

说明

输出解释:

{此时关灯顺序为3 4 2 1 5,不必输出这个关灯顺序}

区间dp+费用提前计算

\(F[i][j][0]\)表示关完\([i,j]\)内的所有灯,且此时在i的最小能耗。

\(F[i][j][1]\)表示关完\([i,j]\)内的所有灯,且此时在j的最小能耗。

所以,\(F[i][j][]\)可以由\(F[i+1][j][]\)和\(F[i][j-1][]\)转移而来。

运用费用提前计算的思想,在每次转移时加入对\([1~i),(j,n]\)造成的能耗。

代码比较冗长

#include<bits/stdc++.h>
using namespace std;
int read()
{
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
int s[53],p[53];
int f[53][53][2],sum[53];
int main()
{
memset(f,0x3f,sizeof(f));
int n=read(),c=read();
for(int i=1;i<=n;i++)
{
s[i]=read();p[i]=read();
sum[i]=sum[i-1]+p[i];
}
f[c][c][0]=f[c][c][1]=0;
for(int len=1;len<n;len++)
{
for(int zuo=max(1,c-len);zuo<=n-len;zuo++)
{
int you=zuo+len;
if(f[zuo][you][1]>f[zuo][you-1][1]+(sum[n]+sum[zuo-1]-sum[you-1])*(s[you]-s[you-1]))
{
f[zuo][you][1]=f[zuo][you-1][1]+(sum[n]+sum[zuo-1]-sum[you-1])*(s[you]-s[you-1]);
}
if(f[zuo][you][1]>f[zuo][you-1][0]+(sum[n]+sum[zuo-1]-sum[you-1])*(s[you]-s[zuo]))
{
f[zuo][you][1]=f[zuo][you-1][0]+(sum[n]+sum[zuo-1]-sum[you-1])*(s[you]-s[zuo]);
}
if(f[zuo][you][0]>f[zuo+1][you][0]+(sum[n]+sum[zuo]-sum[you])*(s[zuo+1]-s[zuo]))
{
f[zuo][you][0]=f[zuo+1][you][0]+(sum[n]+sum[zuo]-sum[you])*(s[zuo+1]-s[zuo]);
}
if(f[zuo][you][0]>f[zuo+1][you][1]+(sum[n]+sum[zuo]-sum[you])*(s[you]-s[zuo]))
{
f[zuo][you][0]=f[zuo+1][you][1]+(sum[n]+sum[zuo]-sum[you])*(s[you]-s[zuo]);
}
}
}
cout<<min(f[1][n][0],f[1][n][1]);
}

[Luogu1220]关路灯(区间dp)的更多相关文章

  1. P1220 关路灯 区间dp

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  2. P1220 关路灯——区间dp

    P1220 关路灯 题目描述 某一村庄在一条路线上安装了 \(n\) 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一 ...

  3. 洛谷 P1220 关路灯 区间DP

    题目描述 某一村庄在一条路线上安装了 n 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了 ...

  4. 洛谷P1220关路灯——区间DP

    题目:https://www.luogu.org/problemnew/show/P1220 区间DP. 代码如下: #include<iostream> #include<cstd ...

  5. luogu1220_关路灯 区间dp

    传送门 区间dp f[i][j][state] : [i, j]区间 state=0 当前选i state = 1 当前选j 注意枚举的顺序 转移的设计时 在同时刻不在[i,j]区间里的数也要考虑 不 ...

  6. 洛谷P1220关路灯[区间DP]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  7. 洛谷P1220关路灯[区间DP 提前计算代价]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  8. luogu 1220 关路灯 区间dp

    Code: #include <bits/stdc++.h> #define ll long long #define N 1003 #define setIO(s) freopen(s& ...

  9. [luoguP1220] 关路灯(DP)

    传送门 如果去关某一个灯,那么途中经过的灯都能关闭,那么就是连续一段区间,区间DP. f[i][j][0] 表示关完 i, j 这个区间且在 i 这个位置 f[i][j][1] 表示关完 i, j 这 ...

随机推荐

  1. nginx做反向代理时出现302错误(转载)

    现象:nginx在使用非80端口做反向代理时,浏览器访问发现返回302错误 详细现象如下: 浏览器请求登录页: 输入账号密码点击登录: 很明显登录后跳转的地址少了端口号. 原因:proxy.conf文 ...

  2. java 中创建线程有哪几种方式?

    Java中创建线程主要有三种方式: 一.继承Thread类创建线程类 (1)定义Thread类的子类,并重写该类的run方法,该run方法的方法体就代表了线程要完成的任务.因此把run()方法称为执行 ...

  3. 三十六、python 中subprocess介绍

    import subprocess 1.执行系统命令subprocess.call('ipconfig') #shell=False时,拼接命令分开写,放在列表中,等于True时,可写一块,空格隔开例 ...

  4. 《图解 TCP-IP(第 5 版)》

    第一章 网络基础知识 计算机网络根据规模可以分为:广域网(WAN: Wide Area Network)和局域网(LAN: Local Area Network) 协议的标准化: 国际标准化组织(IS ...

  5. chales抓包,模拟异常情况

    抓包能做什么? 1 .可以抓取客户端和server的请求和返回,可以借助判断是客户端问题是server问题 2.可以模拟各种异常情况用来测试异常情况 3.无接口文档情况下测试接口 怎么修改你抓到的请求 ...

  6. Delphi XE2 之 FireMonkey 入门(26) - 数据绑定: TBindingsList: TBindExprItems

    Delphi XE2 之 FireMonkey 入门(26) - 数据绑定: TBindingsList: TBindExprItems 如果要给一对 "源控件" 和 " ...

  7. 负载均衡环境搭建(nginx和tomcat)

    偶然看到博客上一篇负载均衡的文章,学习了一下,此处做下记录 目录 1.环境准备 2.tomcat配置 3.nginx配置 1.环境准备 第一步:java环境 第二步:nginx和pcre源码包 下载链 ...

  8. windows7 玩 WinKawaks kof2002为什么提示couldn't initialise DirectSound?

    插上 耳机  或者 音响 就ok 呵呵 http://wenwen.sogou.com/z/q200172744.htm windows7 玩 WinKawaks kof2002为什么提示couldn ...

  9. linux中安装gitlab和cicd(断网版)

    1:先介绍一下怎么查找所需要的依赖包 #yum install rpmname--downloadonly --downloaddir=/rpmpath 例如:yum install gitlab-r ...

  10. [Usaco2014 Feb] Roadblock

    有一个无向图,共N个节点,编号1至N,共M条边.FJ在节点1,它想到达节点N.FJ总是会选择最短路径到达节点N .作为捣蛋的奶牛Bessie,它想尽量延迟FJ到达节点N的时间,于是Bessie决定从M ...