LightOJ 1203 Guarding Bananas (凸包最小顶角)
题目链接:LightOJ 1203
Problem Description
Once there was a lazy monkey in a forest. But he loved banana too much. One day there was a storm in the jungle and all the bananas fell from the trees. The monkey didn't want to lose any of the bananas. So, he wanted to find a banana such that he can eat that and he can also look after the other bananas. As he was lazy, he didn't want to move his eyes too wide. So, you have to help him finding the banana from where he can look after all the bananas but the degree of rotating his eyes is as small as possible. You can assume that the position of the bananas can be modeled as 2D points.
Here a banana is shown, from where the monkey can look after all the bananas with minimum eye rotation.
Input
Input starts with an integer \(T (\le 13)\), denoting the number of test cases.
Each case starts with a line containing an integer \(n (1 \le n \le 105)\) denoting the number of bananas. Each of the next \(n\) lines contains two integers \(x y (-10^9 \le x, y \le 10^9)\) denoting the co-ordinate of a banana. There can me more than one bananas in the same co-ordinate.
Output
For each case, print the case number and the minimum angle in degrees. Errors less than \(10^-6\) will be ignored.
Sample Input
2
1
4 4
4
0 0
10 0
10 10
2 1
Sample Output
Case 1: 0
Case 2: 45.0000000
Note
Dataset is huge. Use faster I/O methods.
Solution
题意:
给定若干个点的坐标,求凸包最小顶角。
思路
凸包
先求凸包,然后枚举所有顶角求最小值。
顶角求法:用两个向量的夹角求
\(\angle BAC\) 为向量 \(\overrightarrow {AB}\) 与 \(\overrightarrow {AC}\) 的夹角:
\]
Code
#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int maxn = 1e5 + 10;
int n;
struct Point {
double x, y;
Point() {}
Point(double a, double b) : x(a), y(b) {}
bool operator<(const Point &b) const {
if (x < b.x) return 1;
if (x > b.x) return 0;
return y < b.y;
}
Point operator-(const Point &b) {
return Point(x - b.x, y - b.y);
}
} p[maxn], stk[maxn];
typedef Point Vec;
int sgn(double x) {
if (fabs(x) <= eps)
return 0;
return x > 0 ? 1 : -1;
}
double dist(Point a, Point b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
double cross(Vec a, Vec b) {
return a.x * b.y - a.y * b.x;
}
int Andrew() {
sort(p + 1, p + 1 + n);
int len = 0;
for (int i = 1; i <= n; ++i) {
while (len > 1 && sgn(cross(stk[len] - stk[len - 1], p[i] - stk[len - 1])) == -1) {
len--;
}
stk[++len] = p[i];
}
int k = len;
for (int i = n - 1; i >= 1; --i) {
while (len > k && sgn(cross(stk[len] - stk[len - 1], p[i] - stk[len - 1])) == -1) {
len--;
}
stk[++len] = p[i];
}
return len;
}
double angle(Point p, Point q, Point s) {
double x1 = q.x - p.x, y1 = q.y - p.y;
double x2 = s.x - p.x, y2 = s.y - p.y;
double ans = (x1 * x2 + y1 * y2) / (sqrt(x1 * x1 + y1 * y1) * sqrt(x2 * x2 + y2 * y2));
return acos(ans);
}
int main() {
int T;
scanf("%d", &T);
int kase = 0;
while(T--) {
map<pair<double, double>, int> mp;
n = 0;
int cnt;
scanf("%d", &cnt);
for (int i = 1; i <= cnt; ++i) {
double x, y;
scanf("%lf%lf", &x, &y);
if(mp[make_pair(x, y)] == 0) {
mp[make_pair(x, y)] = 1;
p[++n].x = x;
p[n].y = y;
}
}
if(n < 3) {
printf("Case %d: 0\n", ++kase);
continue;
}
int t = Andrew();
double min_angle = angle(stk[1], stk[t - 1], stk[2]);
for (int i = 2; i < t; i++) {
min_angle = min(min_angle, angle(stk[i], stk[i - 1], stk[i + 1]));
}
printf("Case %d: %.6lf\n", ++kase, min_angle * 180.0 / pi);
}
return 0;
}
LightOJ 1203 Guarding Bananas (凸包最小顶角)的更多相关文章
- Guarding Bananas
Guarding Bananas Once there was a lazy monkey in a forest. But he loved banana too much. One day the ...
- LightOj1203 - Guarding Bananas(凸包求多边形中的最小角)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1203 题意:给你一个点集,求凸包中最小的角:模板题,但是刚开始的时候模板带错了,错的我 ...
- LightOJ 1239 - Convex Fence 凸包周长
LINK 题意:类似POJ的宫殿围墙那道,只不过这道题数据稍微强了一点,有共线的情况 思路:求凸包周长加一个圆周长 /** @Date : 2017-07-20 15:46:44 * @FileNam ...
- LightOJ 1203--Guarding Bananas(二维凸包+内角计算)
1203 - Guarding Bananas PDF (English) Statistics Forum Time Limit: 3 second(s) Memory Limit: 32 M ...
- kuangbin 带你飞 数学基础
模版整理: 晒素数 void init() { cas = ; ; i < MAXD ; i++) is_prime[i] = true; is_prime[] = is_prime[] = f ...
- (hdu step 7.1.5)Maple trees(凸包的最小半径寻找掩护轮)
称号: Maple trees Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- 【旋转卡壳+凸包】BZOJ1185:[HNOI2007]最小矩形覆盖
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1945 Solve ...
- 【BZOJ1185】[HNOI2007]最小矩形覆盖(凸包,旋转卡壳)
[BZOJ1185][HNOI2007]最小矩形覆盖(凸包,旋转卡壳) 题面 BZOJ 洛谷 题解 最小的矩形一定存在一条边在凸包上,那么枚举这条边,我们还差三个点,即距离当前边的最远点,以及做这条边 ...
- [BZOJ1185][HNOI2007]最小矩形覆盖-[凸包+旋转卡壳]
Description 传送门 Solution 感性理解一下,最小矩形一定是由一条边和凸包上的边重合的. 然后它就是模板题了..然而真的好难调,小于大于动不动就打错. Code #include&l ...
随机推荐
- python pymouse用法记录
from pymouse import PyMouse m = PyMouse() m.position()#获取当前坐标的位置 m.move(x,y)#鼠标移动到xy位置 m.click(x,y)# ...
- python count()函数
Python 元组 count() 方法用于统计某个元素在元祖,列表,字符串中出现的次数.可选参数为在字符串搜索的开始与结束位置. 参数 sub -- 搜索的子字符串 start -- 字符串开始搜索 ...
- elasticsearch+kibana+fluentd 日志搜集集群搭建
使用fluentd来搜集Nginx日志,准备3台服务器,列表如下 node1 elasticsearch/kibana/td-agent node2 td-agent/nginx node3 td-a ...
- CenterOS 设置静态IP
本文主要介绍这样再CenterOS 中设定静态IP. 工具 centerOS 6.9 步骤 执行命令:vi /etc/sysconfig/network-scripts/ifcfg-eth0 编辑,填 ...
- Android组件内核之组件间通信方案(四)上篇
阿里P7Android高级架构进阶视频免费学习请点击:https://space.bilibili.com/474380680本篇文章将先从以下三个内容来介绍通信方案: [Activity与Fragm ...
- 关于shell脚本中的别名问题
在shell脚本中,shell中的alias别名是不会起作用的,在脚本中的命令都是按着环境变量PATH直接找到命令文件而执行的,所以就不用担心脚本里的命令会与shell中的个性别名冲突啦~
- KiCAD原理图导出PDF方法
KiCAD原理图导出为PDF 1.文件->绘制 2.按照下图选择保存目录和输出格式后,选择绘制当前页或者所有页
- 【Luogu】【关卡2-11】简单数学问题(2017年10月)【还差三道题】
火星人 麦森数 P1403 [AHOI2005]约数研究 f(n)表示n的约数个数,现在给出n,要求求出f(1)到f(n)的总和. 解答:有几个1做约数的个数 = n /1; 有几个2做约数的个数 = ...
- static变量与普通变量的异同
1.static局部变量与普通局部变量的异同 相同点:都是局部变量,在函数内部定义,仅能被该模块内部的语句所访问. 不同点: 1)内存分配与释放: static修饰的局部变量在内存中存放在静态存储区, ...
- JavaWeb开发之一《Tomcat服务器的部署、安装及应用》
搬以前写的博客[2014-12-10 21:43] 这几天做了一个Java的程序,然后先把他搭载到Web上,于是学习了基于Tomcat服务器的web开发,这里回顾一下Tomcat服务器的搭建过程. 1 ...
