Python 数据分析:Pandas 缺省值的判断
Python 数据分析:Pandas 缺省值的判断
背景
我们从数据库中取出数据存入 Pandas None 转换成 NaN 或 NaT。但是,我们将 Pandas 数据写入数据库时又需要转换成 None,不然就会报错。因此,我们就需要处理 Pandas 的缺省值。
样本数据
id name password sn sex age amount content remark login_date login_at created_at
0 1 123456789.0 NaN NaN NaN 20 NaN NaN NaN NaN NaT 2019-08-10 10:00:00
1 2 NaN NaN NaN NaN 20 NaN NaN NaN NaN NaT 2019-08-10 10:00:00
判断缺省值
如果 column
是缺省值,则统一处理为 None。
def judge_null(column):
if pd.isnull(column):
return None
return column
处理缺省值
按列处理缺省值。
df['id'] = df.apply(lambda row: judge_null(row['id']), axis=1)
df['name'] = df.apply(lambda row: judge_null(row['name']), axis=1)
df['password'] = df.apply(lambda row: judge_null(row['password']), axis=1)
df['sn'] = df.apply(lambda row: judge_null(row['sn']), axis=1)
df['sex'] = df.apply(lambda row: judge_null(row['sex']), axis=1)
df['age'] = df.apply(lambda row: judge_null(row['age']), axis=1)
df['amount'] = df.apply(lambda row: judge_null(row['amount']), axis=1)
df['content'] = df.apply(lambda row: judge_null(row['content']), axis=1)
df['remark'] = df.apply(lambda row: judge_null(row['remark']), axis=1)
df['login_date'] = df.apply(lambda row: judge_null(row['login_date']), axis=1)
df['login_at'] = df.apply(lambda row: judge_null(row['login_at']), axis=1)
df['created_at'] = df.apply(lambda row: judge_null(row['created_at']), axis=1)
处理完成之后的数据
id name password sn sex age amount content remark login_date login_at created_at
0 1 123456789.0 None None None 20 None None None None None 2019-08-10 10:00:00
1 2 None None None None 20 None None None None None 2019-08-10 10:00:00
补充
设置显示所有的行、列及值得长度。
# 显示所有列
pd.set_option('display.max_columns', None)
# 显示所有行
pd.set_option('display.max_rows', None)
# 设置value的显示长度为100,默认为50
pd.set_option('max_colwidth', 100)
对应的数据库建表语句
create table test
(
id int(10) not null primary key,
name varchar(32) null,
password char(10) null,
sn bigint null,
sex tinyint(1) null,
age int(5) null,
amount decimal(10, 2) null,
content text null,
remark json null,
login_date date null,
login_at datetime null,
created_at timestamp null
);
Python 数据分析:Pandas 缺省值的判断的更多相关文章
- Python数据分析--Pandas知识点(三)
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...
- Python数据分析--Pandas知识点(二)
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...
- Python数据分析-Pandas(Series与DataFrame)
Pandas介绍: pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的. Pandas的主要功能: 1)具备对其功能的数据结构DataFrame.Series 2)集成时间序 ...
- Python数据分析Pandas库数据结构(一)
pandas数据结构 1.生成一维矩阵模拟数据 import pandas as pdimport numpy as nps = pd.Series([1,2,3,4,np.nan,9,9])s2 = ...
- python 数据分析--pandas
接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析 ...
- Python数据分析Pandas库方法简介
Pandas 入门 Pandas简介 背景:pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,旨在使“关系”或“标记”数据的使用既简单又直观.它旨在成为在Python中进行实际, ...
- Python数据分析Pandas库之熊猫(10分钟二)
pandas 10分钟教程(二) 重点发法 分组 groupby('列名') groupby(['列名1','列名2',.........]) 分组的步骤 (Splitting) 按照一些规则将数据分 ...
- Python数据分析Pandas库之熊猫(10分钟一)
pandas熊猫10分钟教程 排序 df.sort_index(axis=0/1,ascending=False/True) df.sort_values(by='列名') import numpy ...
- Python数据分析中对重复值、缺失值、空格的处理
对重复值的处理 把数据结构中,行相同的数据只保留一行 函数语法: drop_duplicates() from pandas import read_csv df = read_csv(文件位置) n ...
随机推荐
- 在vue中结合render函数渲染指定的组件到容器中
1.demo 项目结构: index.html <!DOCTYPE html> <html> <head> <title>标题</title> ...
- jeesite安装时Perhaps you are running on a JRE rather than a JDK
使用自己本地安装的maven,启动jeesite报错: No compiler is provided in this environment. Perhaps you are running on ...
- Tarjan算法初步
一.前置知识: 强连通分量:有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(stron ...
- centos7 修改ali yum源
centos7 修改yum源为阿里源,某下网络下速度比较快 首先是到yum源设置文件夹里 安装base reop源 cd /etc/yum.repos.d 接着备份旧的配置文件 sudo mv Cen ...
- controller大全(推荐)
@Controller @RequestMapping("/router") @SessionAttributes(value = { "username" } ...
- 使用NSIS脚本制作一个安装包
大部分人第一次看到NSIS脚本都是一脸懵逼的.因为它这个脚本的结构乍一看上去就非常奇怪,不作说明的话是看不懂的. 编写脚本命令的时候要非常注意,命令要按照规定写在脚本中不同的段落里,也就是说,命令的先 ...
- python-接口开发flask模块(二)全局host配置
设置全局变量优势很多主要是可以方便修改参数不需要每个代码单独修改,只修改host配置就可以,减少出错率,提高工作效率MYSQL_HOST = 'XXX.XXX.CCC.XXX' MYSQL_PORT ...
- 在项目中配置PageHelper插件时遇到类型转换异常
PageHelper是一种常用的分页工具,按照常规方法在mybatis的配置文件中整合它: <?xml version="1.0" encoding="UTF-8& ...
- http层负载均衡之 haproxy实践篇
方案 上篇文章讲到了负载均衡的相关理论知识,这篇文章我打算讲讲实践方法以及实践中遇到的问题 方案:haproxy http层负载均衡 安装一个haproxy服务,两个web服务 haproxy:192 ...
- php7.2 下安装swoole扩展
git clone git@github.com:swoole/swoole-src.git phpize ./configure make && make test make ins ...