[CSP-S模拟测试]:环(图论+期望)
题目传送门(内部题79)
输入格式
第一行读入两个整数$n,e$表示节点数及$cwystc$已确定的有向边边数。
接下来$e$行,每行两个整数$x,y$描述$cwystc$确定的边。
输出格式
输出一个整数表示期望陪妹子的天数。
样例
见下发文件
数据范围与提示
对于$30\%$的数据:$n\leqslant 300$
对于另外i$20\%$的数据:$e=0$
对于另外$20\%$的数据:$e=\frac{n\times (n-1)}{2}$
对于$100\%$的数据:$n\leqslant 100,000,e\leqslant 100,000$
题解
先转化一下题意,即让我们求竞赛图的期望最小环的个数。
而对于一张竞赛图,其要么是一张拓扑图,要么存在一个三元环。
因为该图不存在环,于是问题转化为三元环计数。
考虑容斥,不妨设$p[i]$表示点$i$的出度,那么对于三元组$(i,x,y)\{x\in p[i],y\in p[i],x\neq y\}$不组成三元环,而且这样的三元组只会在第$i$点枚举一次。
不妨再设$q[i]$表示连接点$i$未确定的边数,那么期望要减去:
$$\frac{p[i]\times (p[i]-1)}{2}+p[i]\times \frac{q[i]}{2}+\frac{q[i]\times (1-q[i])}{2}\times \frac{1}{4}$$
时间复杂度:$\Theta(n+e)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
const int mod=1000000007;
const int two=500000004;
const int six=166666668;
const int eig=125000001;
int n,e;
int du[100001],p[100001],q[100001];
long long ans;
long long qpow(long long x,long long y)
{
long long res=1;
while(y)
{
if(y&1)res=res*x%mod;
x=x*x%mod;
y>>=1;
}
return res;
}
int main()
{
scanf("%d%d",&n,&e);
while(e--)
{
int x,y;
scanf("%d%d",&x,&y);
du[x]++;du[y]++;p[x]++;
}
ans=1LL*n*(n-1)%mod*(n-2)%mod*six%mod;
for(int i=1;i<=n;i++)
{
q[i]=n-du[i]-1;
ans=(ans-1LL*p[i]*(p[i]-1)%mod*two%mod-1LL*p[i]*q[i]%mod*two%mod-1LL*q[i]*(q[i]-1)%mod*eig%mod+mod)%mod;
}
printf("%lld\n",ans);
return 0;
}
rp++
[CSP-S模拟测试]:环(图论+期望)的更多相关文章
- [CSP-S模拟测试]:走路(期望DP+分治消元)
题目传送门(内部题100) 输入格式 第一行两个整数$n,m$,接下来$m$行每行两个整数$u,v$表示一条$u$连向$v$的边.不保证没有重边和自环. 输出格式 $n-1$行每行一个整数,第$i$行 ...
- [CSP-S模拟测试]:B(期望DP)
题目传送门(内部题151) 输入格式 第一行一个整数$N$. 第二行$N$个整数,第$i$个为$a_i$. 输出格式 一行一个整数,表示答案.为避免精度误差,答案对$323232323$取模. 即设答 ...
- [CSP-S模拟测试]:简单的期望(DP)
题目描述 从前有个变量$x$,它的初始值已给出. 你会依次执行$n$次操作,每次操作有$p\%$的概率令$x=x\times 2$,$(100−p)\%$的概率令$x=x+1$. 假设最后得到的值为$ ...
- [CSP-S模拟测试]:chemistry(期望DP+组合数学)
题目传送门(内部题27) 输入格式 第一行有$4$个整数$n,k,p,q$.第二行有$n$个整数$a_i$.接下来有$n-1$行,每行有两个整数$u,v$,表示$u$与$v$之间通过化学单键连接. 输 ...
- [考试反思]1109csp-s模拟测试106:撞词
(撞哈希了用了模拟测试28的词,所以这次就叫撞词吧) 蓝色的0... 蓝色的0... 都该联赛了还能CE呢... 考试结束前15分钟左右,期望得分300 然后对拍发现T2伪了写了一个能拿90分的垃圾随 ...
- NOIP模拟测试17&18
NOIP模拟测试17&18 17-T1 给定一个序列,选取其中一个闭区间,使得其中每个元素可以在重新排列后成为一个等比数列的子序列,问区间最长是? 特判比值为1的情况,预处理比值2~1000的 ...
- DotNetCore跨平台~Moq框架实现模拟测试
回到目录 当我们进行软件开发时,一般会写单元测试,而对于业务情景来说,一般是测试它的业务逻辑准确性,对于你的测试数据是否来自数据库还是文件,是否为真实还是模拟,并不是很关心!我关心的就是我的业务逻辑是 ...
- 利用Python中的mock库对Python代码进行模拟测试
这篇文章主要介绍了利用Python中的mock库对Python代码进行模拟测试,mock库自从Python3.3依赖成为了Python的内置库,本文也等于介绍了该库的用法,需要的朋友可以参考下 ...
- Mockito:一个强大的用于Java开发的模拟测试框架
https://blog.csdn.net/zhoudaxia/article/details/33056093 介绍 本文将介绍模拟测试框架Mockito的一些基础概念, 介绍该框架的优点,讲解应用 ...
随机推荐
- docker--搭建docker swarm集群
10 搭建docker swarm集群 10.1 swarm 介绍 Swarm这个项目名称特别贴切.在Wiki的解释中,Swarm behavior是指动物的群集行 为.比如我们常见的蜂群,鱼群,秋天 ...
- centos 7 中如何提取IP地址
ifconfig |grep -Eo "(([1-9)?[0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|1[0-9]{2}|2[0-4][0 ...
- kubeadm搭建K8s集群及Pod初体验
基于Kubeadm 搭建K8s集群: 通过上一篇博客,我们已经基本了解了 k8s 的基本概念,也许你现在还是有些模糊,说真的我也是很模糊的.只有不断地操作去熟练,强化自己对他的认知,才能提升境界. 我 ...
- JS跨域--window.name
JS跨域--window.name:https://www.jianshu.com/p/43ff69d076e3
- 似乎在梦中见过的样子 (KMP)
# 10047. 「一本通 2.2 练习 3」似乎在梦中见过的样子 [题目描述] 「Madoka,不要相信 QB!」伴随着 Homura 的失望地喊叫,Madoka 与 QB 签订了契约. 这是 Mo ...
- linux 打包和压缩的概念和区别
对于刚刚接触Linux的人来说,一定会给Linux下一大堆各式各样的文件名 给搞晕.别个不说,单单就压缩文件为例,我们知道在Windows下最常见的压缩文件就只有两种,一是,zip,另一个是.rar. ...
- 配置阿里云SLB全站HTTPS集群(以下内容仅为流程,信息可能有些对应不上)
1)登录阿里云购买两台实例 1.1) 按量付费购买两台实例 1.2) 配置网络可以不选择分配外网 1.3) 自定义密码 1.4) 购买完成 1.5) 实例列表 2)购买SLB实例 2.1)按量付费购买 ...
- 洛谷 P2704 [NOI2001]炮兵阵地 (状态压缩DP+优化)
题目描述 司令部的将军们打算在NM的网格地图上部署他们的炮兵部队.一个NM的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P" ...
- Manacher || P4555 [国家集训队]最长双回文串 || BZOJ 2565: 最长双回文串
题面:P4555 [国家集训队]最长双回文串 题解:就.就考察马拉车的理解 在原始马拉车的基础上多维护个P[i].Q[i]数组,分别表示以i结尾最长回文子串的长度和以i开头的最长回文子串的长度 然后就 ...
- DevExpress v18.2版本亮点——Analytics Dashboard篇(二)
行业领先的.NET界面控件——DevExpress v18.2版本亮点详解,本文将介绍了DevExpress Analytics Dashboard v18.2 的版本亮点,新版30天免费试用!点击下 ...