传送门

解题思路

  肯定先要建出来广义后缀自动机。刚开始以为是个二分+贪心,写了一下结果\(20\)分。说一下正解,首先显然\(L_0\)具有单调性,是可以二分的。考虑二分后怎样判合法,对于分割序列很容易想到\(dp\),设\(f_i\)表示前\(i\)个字符匹配成功数量,那么有转移方程\(f_i=max(f_j+i-j)(i-j>=L\) 且 \(j\)到\(i\)可以匹配 \()\),\(L\)是二分出来的限制,判断是否能匹配可以预处理,预处理出\(mth_i\)表示\(i\)最多能与往前\(mth_i\)位匹配成功,那么第二个条件就变成了\(j>=i-mth_i\)。如果这样做是\(O(n^2logn)\)的,实测可以拿到\(75\)分2333。考虑优化,发现\(i-mth_i\)具有单调性,因为每移动一格\(i\)会\(+1\),而\(mth_i\)最多\(+1\)。那么可以用一个单调递减队列来优化,每次将\(i-lim\)入队,取出队头更新答案,时间复杂度为\(O(nlogn)\)。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> using namespace std;
const int N=1100005<<1; int n,m,res,ans,f[N],mth[N],q[N],hd,tl;
char s[N]; struct SAM{
int ch[N][2],fa[N],l[N],lst,cnt;
void Insert(int c){
int p=lst,np=++cnt; l[np]=l[p]+1; lst=cnt;
for(;p && !ch[p][c];p=fa[p]) ch[p][c]=np;
if(!p) fa[np]=1;
else {
int q=ch[p][c];
if(l[p]+1==l[q]) fa[np]=q;
else {
int nq=++cnt; l[nq]=l[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[nq]));
fa[nq]=fa[q]; fa[q]=fa[np]=nq;
for(;ch[p][c]==q;p=fa[p]) ch[p][c]=nq;
}
}
}
void prework(int len){
int now=1,num=0;
for(int i=1;i<=len;i++){
if(ch[now][s[i]-'0']) now=ch[now][s[i]-'0'],num++;
else {
for(;now && !ch[now][s[i]-'0'];now=fa[now]);
if(!now) now=1,num=0;
else num=l[now]+1,now=ch[now][s[i]-'0'];
}
mth[i]=num;
}
}
bool check(int lim,int len){
int tmp; hd=1; tl=0;
for(int i=1;i<=len;i++){
f[i]=f[i-1]; if(i<lim) continue; tmp=i-mth[i];
while(hd<=tl && f[q[tl]]-q[tl]<=f[i-lim]-i+lim) tl--;
q[++tl]=i-lim;
while(hd<=tl && q[hd]<tmp) hd++;
if(hd<=tl) f[i]=max(f[i],f[q[hd]]-q[hd]+i);
}
// for(int i=1;i<=len;i++){
// f[i]=f[i-1];
// for(int j=max(0,i-mth[i]);j+lim<=i;j++)
// f[i]=max(f[i],f[j]+i-j);
// }
return len-f[len]>res?0:1;
}
void solve(int len){
prework(len);
int L=1,R=len,mid;
while(L<=R){
mid=(L+R)>>1;
if(check(mid,len)) L=mid+1,ans=mid;
else R=mid-1;
}
printf("%d\n",ans);
}
}sam; int main(){
scanf("%d%d",&n,&m); sam.cnt=1; int len;
for(int i=1;i<=m;i++){
scanf("%s",s+1); sam.lst=1;
len=strlen(s+1);
for(int j=1;j<=len;j++) sam.Insert(s[j]-'0');
}
for(int i=1;i<=n;i++){
scanf("%s",s+1); len=strlen(s+1);
res=(len*9+9)/10; res=len-res;
sam.solve(len); ans=0;
}
return 0;
}

BZOJ 2806: [Ctsc2012]Cheat(单调队列优化dp+后缀自动机)的更多相关文章

  1. bzoj 2216: Lightning Conductor 单调队列优化dp

    题目大意 已知一个长度为\(n\)的序列\(a_1,a_2,...,a_n\)对于每个\(1\leq i\leq n\),找到最小的非负整数\(p\)满足: 对于任意的\(j\), \(a_j \le ...

  2. BZOJ 1233 干草堆 (单调队列优化DP)

    $ BZOJ~1233~~ $ 干草堆: (题目特殊性质) $ solution: $ 很妙的一道题目,开始看了一眼觉得是个傻逼贪心,从后往前当前层能多短就多短,尽量节省花费.但是这是DP专题,怎么会 ...

  3. BZOJ 1855 股票交易(单调队列优化DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1855 题意:最近lxhgww又迷上了投资股票, 通过一段时间的观察和学习,他总结出了股票 ...

  4. BZOJ 1499 [NOI2005] 瑰丽华尔兹 | 单调队列优化DP

    BZOJ 1499 瑰丽华尔兹 | 单调队列优化DP 题意 有一块\(n \times m\)的矩形地面,上面有一些障碍(用'#'表示),其余的是空地(用'.'表示).每时每刻,地面都会向某个方向倾斜 ...

  5. bzoj 1499 [NOI2005]瑰丽华尔兹——单调队列优化dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1499 简单的单调队列优化dp.(然而当时却WA得不行.今天总算填了坑) 注意滚动数组赋初值应 ...

  6. 单调队列优化DP || [NOI2005]瑰丽华尔兹 || BZOJ 1499 || Luogu P2254

    题外话:题目极好,做题体验极差 题面:[NOI2005]瑰丽华尔兹 题解: F[t][i][j]表示第t时刻钢琴位于(i,j)时的最大路程F[t][i][j]=max(F[t-1][i][j],F[t ...

  7. P4381 [IOI2008]Island(基环树+单调队列优化dp)

    P4381 [IOI2008]Island 题意:求图中所有基环树的直径和 我们对每棵基环树分别计算答案. 首先我们先bfs找环(dfs易爆栈) 蓝后我们处理直径 直径不在环上,就在环上某点的子树上 ...

  8. 【笔记篇】单调队列优化dp学习笔记&&luogu2569_bzoj1855股票交♂易

    DP颂 DP之神 圣洁美丽 算法光芒照大地 我们怀着 崇高敬意 跪倒在DP神殿里 你的复杂 能让蒟蒻 试图入门却放弃 在你光辉 照耀下面 AC真心不容易 dp大概是最经久不衰 亘古不化的算法了吧. 而 ...

  9. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

随机推荐

  1. Vue作用域插槽:用作循环结构的模版

    一 项目结构 二 App组件 <template> <div id="app"> <!-- 子组件 --> <todos :list=&q ...

  2. HDU 1269 迷宫城堡 (Kosaraju)

    题目链接:HDU 1269 Problem Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000), ...

  3. 编程语言 - PHP

    环境搭建 Window7+Apache24+PHP7. Apache24配置 LoadModule php7_module "D:/SoftWare/php-7.2.21-Win32-VC1 ...

  4. 关于static以及final关键字

    Static关键字: 可以用来修饰类中的属性.类中的方法.以及具体的某一个类. 1.用于修饰属性: 则表示该属性属于整个类,不论有多少个对象实例,所有的实例共同拥有一个static静态的成员变量.该变 ...

  5. 基于Apache搭建HTTP HTTPS

    参考资料 <openssl攻略>--第一章 <Apache服务器配置与使用工作笔记>-- 第六章 第十四章 https://juejin.im/post/5a31faf2518 ...

  6. MySQL5.7的搭建以及SSL证书

    Centos7 安装MySQL 5.7 (通用二进制包) 1.1  下载软件包 https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.17-l ...

  7. 15.队列Queue的特点以及使用,优先级等

    #生产者与消费者模式,模式解释:比如MVC设计模式 ''' 1.队列 (1)特点:先进先出 (2)python2 VS python3 python2:from Queue import queue ...

  8. python3标准库总结

    Python3标准库 操作系统接口 os模块提供了不少与操作系统相关联的函数. ? 1 2 3 4 5 6 >>> import os >>> os.getcwd( ...

  9. BZOJ 3262(Treap+树状数组)

    题面 传送门 分析 分三维考虑 对第一维,直接排序 对第二维和第三维,我们这样考虑 朴素的方法是建k棵Treap,第i棵Treap里存第二维值为k的第三维数值 每次查询一组(a,b,c),只要在1~b ...

  10. 20、numpy——IO

    NumPy IO Numpy 可以读写磁盘上的文本数据或二进制数据. NumPy 为 ndarray 对象引入了一个简单的文件格式:npy. npy 文件用于存储重建 ndarray 所需的数据.图形 ...