题目传送门(内部题18)


输入格式

第一行包括四个数$n,m,k,s$表示有$n$个剧情点,$m$个关卡,要玩$k$次游戏,$s$个完结点接下来一行包含$s$个数,代表$s$个完结点的编号。
接下来$m$行,每行五个正整数$x_i,y_i,A_i,B_i,C_i$,代表第$i$号关卡从$x_i$号剧情点连向$y_i$号剧情点,$A_i,B_i,C_i$意义如题目描述。


输出格式

如果不能通关输出$-1$,否则输出一个整数,代表至少需要的软妹币值。


样例

样例输入:

6 8 2 2
4 5
1 2 4 0 2
1 3 5 0 2
3 4 1 5 1
2 5 1 0 1
4 6 4 2 2
5 6 0 4 2
1 5 5 9 2
2 6 4 5 2

样例输出:

16


数据范围与提示

样例解释:

第一次从$1−>2−>5$,费用为$5$。
第二次从$1−>3−>4$,费用为$11$。

数据范围:

对于$30\%$的数据,$A_i=0$。
对于另外$20\%$的数据,游戏为一条链。
对于$100\%$的数据,$1\leqslant n\leqslant 1,000,1\leqslant m\leqslant 20,000,1\leqslant k\leqslant 200,A_i,B_i\geqslant 0,1\leqslant C_i\leqslant k$。
保证答案在$int$范围内。


题解

注意到$k$只有200,但是又有谁能想到是费用流呢?

实际上,我的思路和题解稍有偏差。

建边的时候记录上边的$A,B$,每走一次就让花费增加,退流的时候再剪掉就好了,缺点就是每次只能流一个,不然有可能会错过最优答案。

时间复杂度:$\Theta(m\times k+n\times k^2)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
struct rec
{
int nxt;
int to;
int w;
int f;
int a;
}e[100001];
int head[5001],cnt=1;
int n,m,k,s;
int S,T;
int que[100001],pre[50001],dis[50001];
bool vis[50001];
int ans;
void add(int x,int y,int w,int f,int a)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
e[cnt].w=w;
e[cnt].f=f;
e[cnt].a=a;
head[x]=cnt;
}
bool bfs()
{
memset(dis,0x3f,sizeof(dis));
memset(vis,0,sizeof(vis));
dis[S]=0;
vis[S]=1;
int he=1,ta=1;
que[ta]=S;
while(he<=ta)
{
for(int i=head[que[he]];i;i=e[i].nxt)
if(e[i].w&&dis[que[he]]+e[i].f<dis[e[i].to])
{
dis[e[i].to]=dis[que[he]]+e[i].f;
pre[e[i].to]=i;
if(!vis[e[i].to])
{
vis[e[i].to]=1;
que[++ta]=e[i].to;
}
}
vis[que[he]]=0;
he++;
}
return dis[T]!=1061109567;
}
void update()
{
int flag=T;
while(flag!=S)
{
int x=pre[flag];
ans+=e[x].f;
e[x].w--;
e[x^1].w++;
e[x].f+=e[x].a;
e[x^1].f-=e[x].a;
flag=e[x^1].to;
}
}
int main()
{
scanf("%d%d%d%d",&n,&m,&k,&s);
S=n+1,T=n+2;
add(S,1,k,0,0);
add(1,S,0,0,0);
for(int i=1;i<=s;i++)
{
int x;
scanf("%d",&x);
add(x,T,k,0,0);
add(T,x,0,0,0);
}
for(int i=1;i<=m;i++)
{
int x,y,a,b,c;
scanf("%d%d%d%d%d",&x,&y,&a,&b,&c);
add(x,y,c,b+a,a);
add(y,x,0,-b,a);
}
cnt=0;
while(bfs())
{
update();
cnt++;
}
if(cnt<k)puts("-1");
else printf("%d",ans);
return 0;
}

rp++

[CSP-S模拟测试]:壕游戏(费用流)的更多相关文章

  1. BZOJ5120 [2017国家集训队测试]无限之环 费用流

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ5120 题意概括 原题挺简略的. 题解 本题好难. 听了任轩笛大佬<国家队神犇>的讲课才 ...

  2. BZOJ 5120: [2017国家集训队测试]无限之环(费用流)

    传送门 解题思路 神仙题.调了一个晚上+半个上午..这道咋看咋都不像图论的题竟然用费用流做,将行+列为奇数的点和偶数的点分开,也就是匹配问题,然后把一个点复制四份,分别代表这个点的上下左右接头,如果有 ...

  3. [CSP-S模拟测试]:矩阵游戏(数学)

    题目描述 $LZK$发明一个矩阵游戏,大家一起来玩玩吧,有一个$N$行$M$列的矩阵.第一行的数字是$1,2,...,M$,第二行的数字是$M+1,M+2,...,2\times M$,以此类推,第$ ...

  4. [CSP-S模拟测试]:城市游戏(图论+DP)

    题目传送门(内部题109) 输入格式 第一行,两个整数$n,m$. 接下来$m$行,每行三个整数$u,v,l$,描述了一条道路连接的两个路口的编号以及道路的长度. 输出格式 输出一行一个整数,为所求的 ...

  5. 【bzoj3291】Alice与能源计划 模拟费用流+二分图最大匹配

    题目描述 在梦境中,Alice来到了火星.不知为何,转眼间Alice被任命为火星能源部长,并立刻面临着一个严峻的考验. 为了方便,我们可以将火星抽象成平面,并建立平面直角坐标系.火星上一共有N个居民点 ...

  6. 【wikioi】1033 蚯蚓的游戏问题(费用流)

    http://wikioi.com/problem/1033/ 这题也是很水的费用流啊,同之前那题一样,拆点然后建边,容量为1,费用为点权.然后建个源连第一行每个点,容量为1,费用为0,然后最后一行每 ...

  7. 【bzoj1150】[CTSC2007]数据备份Backup 模拟费用流+链表+堆

    题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏 ...

  8. BZOJ1150[CTSC2007]数据备份Backup——模拟费用流+堆+链表

    题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游 ...

  9. 【BZOJ1150】[CTSC2007]数据备份Backup 双向链表+堆(模拟费用流)

    [BZOJ1150][CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此 ...

随机推荐

  1. Nginx 官网文档翻译汇总

    Nginx 官网文档,各个模块的手册在这里. Nginx 中文文档 - 淘宝翻译 改版后的新 Nginx 官网文档 概述 新手指南 控制 Nginx 管理员指南 Admin Guide 安装 基本功能 ...

  2. vue事件的绑定

    <!doctype html> <html> <head> <meta charset="UTF-8"> <title> ...

  3. Linux统计即时网速

    Linux查看网络即时网速 sar -n DEV 1 1代表一秒统计并显示一次 在Linux下还有两个工具可以实时的显示流量信息 一个是iftop 另一个是nload.

  4. Codeforces 1105D (BFS)

    题面 传送门 分析 考虑BFS while(棋盘没有满){ for 玩家 p{ 对p进行BFS,走s[p]步 } } 对于每个玩家p BFS的时候如果到了格子(x,y),就把\(vis[x][y]\) ...

  5. spark性能调优06-数据倾斜处理

    1.数据倾斜 1.1 数据倾斜的现象 现象一:大部分的task都能快速执行完,剩下几个task执行非常慢 现象二:大部分的task都能快速执行完,但总是执行到某个task时就会报OOM,JVM out ...

  6. go 结构体取代类

    我们知道go的结构体有点类的感觉,可以有自己的属性和方法. 但是由于结构体的属性都是有零值的,我们在创建结构体的时候并不需要设置这些属性的值就能创建,但是这样创建的结构体往往没有什么实用价值. 我们可 ...

  7. Python : Polymorphism

    class Animal: def __init__(self, name): # Constructor of the class self.name = name def talk(self): ...

  8. Gradle 入门--只此一篇

    是什么? 在语法上是基于Groovy语言的(Groovy 是一种基于JVM的敏捷开发语言,可以简单的理解为强类型语言java的弱类型版本),在项目管理上是基于Ant和Maven概念的项目自动化建构工具 ...

  9. 剑指offer学习--初级c++面试题

    定义一个空的类型,里面没有任何成员函数和成员变量,对该类型求sizeof,得到的结果是多少? 答案是1.空类型中的实例中不包含任何信息,本来求sizeof应该是0,但是当我们声明该类型的实例的时候,他 ...

  10. ES2015箭头函数与普通函数对比理解

    直接返回表达式 var odds = evens.map(v => v + 1); var nums = evens.map((v, i) => v + i); var odds = ev ...