Description

比特哈顿镇有n*n个格点,形成了一个网格图。一开始整张图是完整的。
有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通。

Input

第一行包含两个正整数n,k(2<=n<=1500,1<=k<=2n(n-1)),表示网格图的大小以及操作的个数。
接下来k行,每行包含两条信息,每条信息包含两个正整数a,b(1<=a,b<=n)以及一个字符c(c=N或者E)。
如果c=N,表示删除(a,b)到(a,b+1)这条边;如果c=E,表示删除(a,b)到(a+1,b)这条边。
数据进行了加密,对于每个操作,如果上一个询问回答为TAK或者这是第一个操作,那么只考虑第一条信息,否则只考虑第二条信息。
数据保证每条边最多被删除一次。

Output

输出k行,对于每个询问,如果仍然连通,输出TAK,否则输出NIE。

观察题目有哪些特殊的地方:
#1. 只有删边没有加边 #2. 每次只查讯刚刚删完的两个点.
考虑构建对偶图 :
我们发现如果 $<u,v>$ 不连通,则对应在对偶图上有一个“环”将 $u$ 或者 $v$ 给圈起来.
直接用并查集来维护对偶图即可.
每删掉一条原图中的边,就加入对偶图中该边旋转 90度后的对偶图的边.
用并查集维护连通性,查询有没有出现环的情况.  
#include <bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
const int maxn=1506;
int id[maxn][maxn],p[maxn*maxn];
int find(int x) {
return p[x]==x?x:p[x]=find(p[x]);
}
int merge(int x,int y) {
x=find(x),y=find(y);
if(x==y) return 1;
p[x]=y;
return 0;
}
int main() {
// setIO("input");
int n,k,S,cnt=0;
scanf("%d%d",&n,&k);
S=(n+1)*(n+1)+2;
for(int i=0;i<=S;++i) p[i]=i;
for(int i=0;i<=n;++i) for(int j=0;j<=n;++j) id[i][j]=S;
for(int i=1;i<=n-1;++i) for(int j=1;j<=n-1;++j) id[i][j]=++cnt;
int lastans=0;
for(int cas=1;cas<=k;++cas) {
int a,b,c,d,l,r;
char str[3],br[3];
scanf("%d%d%s%d%d%s",&a,&b,str,&c,&d,br);
if(lastans==0) {
if(str[0]=='N') l=id[a-1][b],r=id[a][b];
else l=id[a][b-1],r=id[a][b];
}
else {
a=c,b=d;
if(br[0]=='N') l=id[a-1][b],r=id[a][b];
else l=id[a][b-1],r=id[a][b];
}
// printf("%d:: %d %d %d %d ",cas,a,b,c,d);
// int l=id[a][b], r=id[c][d];
lastans=merge(l,r);
printf("%s\n",lastans?"NIE":"TAK");
}
return 0;
}

  

BZOJ 4423: [AMPPZ2013]Bytehattan 平面图转对偶图 + 并查集的更多相关文章

  1. BZOJ 4423: [AMPPZ2013]Bytehattan 并查集+平面图转对偶图

    4423: [AMPPZ2013]Bytehattan Time Limit: 3 Sec  Memory Limit: 128 MB Submit: 277  Solved: 183 [Submit ...

  2. BZOJ 4423: [AMPPZ2013]Bytehattan

    Sol 对偶图+并查集. 思路非常好,将网格图转化成对偶图,在原图中删掉一条边,相当于在对偶图中连上一条边(其实就是网格的格点相互连边),每次加边用并查集维护就可以了. 哦对,还要注意边界就是网格外面 ...

  3. bzoj 4423 [AMPPZ2013]Bytehattan(对偶图,并查集)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4423 [题意] 给定一个平面图,随时删边,并询问删边后两点是否连通.强制在线. [科普 ...

  4. 【bzoj4423】[AMPPZ2013]Bytehattan(平面图转对偶图+并查集)

    题目传送门:bzoj4423 如果是普通的删边判连通性,我们可以很显然的想到把操作离线下来,倒着加边.然而,这题强 制 在 线. 虽然如此,但是题目所给的图是个平面图.那么我们把它转成对偶图试试看? ...

  5. BZOJ_4423_[AMPPZ2013]Bytehattan_对偶图+并查集

    BZOJ_4423_[AMPPZ2013]Bytehattan_对偶图+并查集 Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的. 有k次操作,每次会删掉图中的 ...

  6. 【bzoj5183】[Baltic2016]Park 离线+对偶图+并查集

    题目描述 在Byteland的首都,有一个矩形围栏围起来的公园.在这个公园里树和访客都以一个圆形表示.公园有四个出入口,每个角落一个(1=左下角,2=右下角,3=右上角,4=左上角).访客能通过这些出 ...

  7. 【bzoj3007】拯救小云公主 二分+对偶图+并查集

    题目描述 英雄又即将踏上拯救公主的道路…… 这次的拯救目标是——爱和正义的小云公主. 英雄来到boss的洞穴门口,他一下子就懵了,因为面前不只是一只boss,而是上千只boss.当英雄意识到自己还是等 ...

  8. 【BZOJ4423】[AMPPZ2013]Bytehattan 对偶图+并查集

    [BZOJ4423][AMPPZ2013]Bytehattan Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v), ...

  9. BZOJ 4541: [Hnoi2016]矿区 平面图转对偶图+DFS树

    4541: [Hnoi2016]矿区 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 433  Solved: 182[Submit][Status][ ...

随机推荐

  1. 红帽学习笔记[RHCE]OpenLDAP 服务端与客户端配置

    目录 OpenLDAP 服务端与客户端配置 关于LDIF 一个LDIF基本结构一个条目 属性 Object的类型 服务端 安装 生成证书 生成默认数据 修改基本的配置 导入基础数据 关于ldif的格式 ...

  2. HDU 1087 Super Jumping! Jumping! Jumping! (动态规划、最大上升子序列和)

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  3. hive排错

    找出错的那个hive实例,看错误日志: 点下面stdout,找Error

  4. 【转帖】Linux系统上面qemu 模拟arm

    零基础在Linux系统搭建Qemu模拟arm https://blog.csdn.net/weixin_42489042/article/details/81145038 自己没搞定 改天再试试 感谢 ...

  5. php文件上传php.ini配置参数

    php文件上传服务器端配置参数 file_uploads = On,支持HTTP上传uoload_tmp_dir = ,临时文件保存目录upload_max_filesize = 2M,允许上传文件的 ...

  6. 一遍记住 8 种排序算法与 Java 代码实现

    ☞ 程序员进阶必备资源免费送「21种技术方向!」 ☜ 作者:KaelQ, www.jianshu.com/p/5e171281a387 1.直接插入排序 经常碰到这样一类排序问题:把新的数据插入到已经 ...

  7. java线程捕获异常

    java多线程程序中,所有线程都不允许抛出未捕获的checked exception(比如sleep时的InterruptedException),也就是说各个线程需要自己把自己的checked ex ...

  8. 剑指offer 剪绳子

    题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...

  9. qt在tableview中绘制图片

    void ItemModelDeletage::paint(QPainter *painter, const QStyleOptionViewItem &option, const QMode ...

  10. vue-resource对比axios import ... from和import {} from 的区别 element-ui

    1.vue-resource对比axios 文章1 文章2 1.0 axios  params 配置参数在url 显示,form-data 用于 图片上传.文件上传 1.1 axios 全局配置 ax ...