Card Game Cheater

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1576    Accepted Submission(s): 830

Problem Description
Adam and Eve play a card game using a regular deck of 52 cards. The rules are simple. The players sit on opposite sides of a table, facing each other. Each player gets k cards from the deck and, after looking at them, places the cards face down in a row on the table. Adam’s cards are numbered from 1 to k from his left, and Eve’s cards are numbered 1 to k from her right (so Eve’s i:th card is opposite Adam’s i:th card). The cards are turned face up, and points are awarded as follows (for each i ∈ {1, . . . , k}):

If Adam’s i:th card beats Eve’s i:th card, then Adam gets one point.

If Eve’s i:th card beats Adam’s i:th card, then Eve gets one point.

A card with higher value always beats a card with a lower value: a three beats a two, a four beats a three and a two, etc. An ace beats every card except (possibly) another ace.

If the two i:th cards have the same value, then the suit determines who wins: hearts beats all other suits, spades beats all suits except hearts, diamond beats only clubs, and clubs does not beat any suit.

For example, the ten of spades beats the ten of diamonds but not the Jack of clubs.

This ought to be a game of chance, but lately Eve is winning most of the time, and the reason is that she has started to use marked cards. In other words, she knows which cards Adam has on the table before he turns them face up. Using this information she orders her own cards so that she gets as many points as possible.

Your task is to, given Adam’s and Eve’s cards, determine how many points Eve will get if she plays optimally.

 
Input
There will be several test cases. The first line of input will contain a single positive integer N giving the number of test cases. After that line follow the test cases.

Each test case starts with a line with a single positive integer k <= 26 which is the number of cards each player gets. The next line describes the k cards Adam has placed on the table, left to right. The next line describes the k cards Eve has (but she has not yet placed them on the table). A card is described by two characters, the first one being its value (2, 3, 4, 5, 6, 7, 8 ,9, T, J, Q, K, or A), and the second one being its suit (C, D, S, or H). Cards are separated by white spaces. So if Adam’s cards are the ten of clubs, the two of hearts, and the Jack of diamonds, that could be described by the line

TC 2H JD

 
Output
For each test case output a single line with the number of points Eve gets if she picks the optimal way to arrange her cards on the table.

 
Sample Input
3
 
1
JD
JH
 
2
5D TC
4C 5H
 
3
2H 3H 4H
2D 3D 4D 
 
Sample Output
1
1
2
 
Source
题意:两个人一次出一张牌,每一次都会有一个人赢,规则告诉你,再告诉你两个人总共k张牌的每一张牌是多少,问其中一个人最多可以赢几次。
 
so,匹配
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; char x[100][3], y[100][3];
int n, maps[100][100], used[100], vis[100]; int slove(int m, int n)
{
int a, b; if(x[m][0] == 'T')
a = 10;
else if(x[m][0] == 'J')
a = 11;
else if(x[m][0] == 'Q')
a = 12;
else if(x[m][0] == 'K')
a = 13;
else if(x[m][0] == 'A')
a = 14;
else
a = x[m][0] - '0';
if(y[n][0] == 'T')
b = 10;
else if(y[n][0] == 'J')
b = 11;
else if(y[n][0] == 'Q')
b = 12;
else if(y[n][0] == 'K')
b = 13;
else if(y[n][0] == 'A')
b = 14;
else
b = y[n][0] - '0';
if(a > b)
return 1;
if(a == b)
{
if(x[m][1] == 'H')
return 1;
if(x[m][1] == 'S' && (y[n][1] == 'D' || y[n][1] == 'C'))
return 1;
if(x[m][1] == 'D' && y[n][1] == 'C')
return 1;
}
return 0;
} int found(int u)
{
for(int i = 0; i < n; i++)
{
if(maps[u][i] && !vis[i])
{
vis[i] = 1;
if(!used[i] || found(used[i]))
{
used[i] = u;
return true;
}
}
}
return false;
} void init()
{
memset(maps, 0, sizeof(maps));
memset(vis, 0, sizeof(vis));
memset(used, 0, sizeof(used));
memset(x, 0, sizeof(x));
memset(y, 0, sizeof(y));
} int main()
{
int t; scanf("%d", &t);
while(t--)
{
int cou = 0;
scanf("%d", &n); init(); for(int i = 0; i < n; i++)
scanf("%s", x[i]);
for(int i = 30; i < n+30; i++)
scanf("%s", y[i]); for(int i = 0; i < n; i++)
{
for(int j = 30; j < n+30; j++)
{
if(slove(i, j))
maps[i][j] = 1;
else
maps[j][i] = 1;
}
} for(int i = 30; i < n+30; i++)
{
memset(vis, 0, sizeof(vis));
if(found(i))
{
cou++;
}
}
printf("%d\n", cou);
}
return 0;
}

  

 

Card Game Cheater的更多相关文章

  1. hdu----(1528)Card Game Cheater(最大匹配/贪心)

    Card Game Cheater Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. Card Game Cheater(贪心+二分匹配)

    Card Game Cheater Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. (hdu step 6.3.5)Card Game Cheater(匹配的最大数:a与b打牌,问b赢a多少次)

    称号: Card Game Cheater Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

  4. (简单匹配)Card Game Cheater -- hdu --1528

    http://acm.hdu.edu.cn/showproblem.php?pid=1528 Card Game Cheater Time Limit: 2000/1000 MS (Java/Othe ...

  5. HDOJ 1528 Card Game Cheater

    版权声明:来自: 码代码的猿猿的AC之路 http://blog.csdn.net/ck_boss https://blog.csdn.net/u012797220/article/details/3 ...

  6. hdu 1528 Card Game Cheater (二分匹配)

    Card Game Cheater Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. hdu 1528 Card Game Cheater ( 二分图匹配 )

    题目:点击打开链接 题意:两个人纸牌游戏,牌大的人得分.牌大:2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < T < J < ...

  8. POJ 2062 HDU 1528 ZOJ 2223 Card Game Cheater

    水题,感觉和田忌赛马差不多 #include<cstdio> #include<cstring> #include<cmath> #include<algor ...

  9. Card Game Cheater HDU1528

    二分图最大匹配问题 扑克题还是用map比较方便 #include<bits/stdc++.h> using namespace std; #define MAXI 52 ]; ]; int ...

随机推荐

  1. 史上最详细 Linux 用户与用户组知识

    1.用户和用户组文件 在 linux 中,用户帐号,用户密码,用户组信息和用户组密码均是存放在不同的配置文件中的. 在 linux 系统中,所创建的用户帐号和其相关信息 (密码除外) 均是存放在 / ...

  2. 在springboot中使用拦截器

    在springMVC中可以实现拦截器,是通过实现HandlerInterceptor接口,然后在springmvc-web.xml中配置就可以使用拦截器了.在springboot中拦截器也是一样的思想 ...

  3. springboot导包spring-boot-starter-parent出现错误

    <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot ...

  4. 深入理解java虚拟机(4)类加载的过程

    类加载的过程 ------------------------------------------------------- 0.如下图所示JVM类加载机制分为5个部分:加载.验证.准备.解析.初始化 ...

  5. java学习笔记(4)多态

    一.多态 --------------------------------------------- 1.定义:某一类事物的多种存在形态 例如:动物中猫,狗. 猫这个对象对应的类型是猫类型 猫 x  ...

  6. ELK-全文检索技术-使用总结

    一.概念 1.1 基础概念 ELK: 是ElasticSearch,LogStash以及Kibana三个产品的首字母缩写 lucene : apache 的全文搜索引擎工具包 elasticsearc ...

  7. thinkphp5服务器部署遇到的问题

    candir() has been disabled for security reasons 解决办法: 进入到php的配置目录,编辑php.ini cd /usr/local/php/etcvi ...

  8. 定义Vue-router的动态路由,获取传过来的动态参数

    设置:在router目录下的index.js文件中,对path属性加上/:id 获取:使用router对象的params.id

  9. CSS的四种定位的参照物

    一.static定位 HTML 元素的默认值,即没有定位,遵循正常的文档流对象. 静态定位的元素不会受到 top, bottom, left, right影响. <!DOCTYPE html&g ...

  10. iOS常用数学常量宏

    在实际工作中有些程序不可避免的需要使用数学函数进行计算,比如地图程序的地理坐标到地图坐标的变换.Objective-C做为ANSI C的扩展,使用C标准库头文件<math.h>中定义的数学 ...