题目链接:HDU 5572

Problem Description

On an infinite smooth table, there's a big round fixed cylinder and a little ball whose volume can be ignored.

Currently the ball stands still at point \(A\), then we'll give it an initial speed and a direction. If the ball hits the cylinder, it will bounce back with no energy losses.

We're just curious about whether the ball will pass point \(B\) after some time.

Input

First line contains an integer \(T\), which indicates the number of test cases.

Every test case contains three lines.

The first line contains three integers \(O_x\), \(O_y\) and \(r\), indicating the center of cylinder is \((O_x, O_y)\) and its radius is \(r\).

The second line contains four integers \(A_x\), \(A_y\), \(V_x\) and \(V_y\), indicating the coordinate of \(A\) is \((A_x, A_y)\) and the initial direction vector is \((V_x, V_y)\).

The last line contains two integers \(B_x\) and \(B_y\), indicating the coordinate of point \(B\) is \((B_x,B_y)\).

⋅ \(1 ≤ T ≤ 100.\)

⋅ \(|O_x|,|O_y|≤ 1000.\)

⋅ \(1 ≤ r ≤ 100.\)

⋅ \(|A_x|,|A_y|,|B_x|,|B_y|≤ 1000.\)

⋅ \(|V_x|,|V_y|≤ 1000.\)

⋅ \(V_x≠0 or V_y≠0.\)

⋅ both \(A\) and \(B\) are outside of the cylinder and they are not at same position.

Output

For every test case, you should output " Case #x: y", where \(x\) indicates the case number and counts from \(1\). \(y\) is " \(Yes\)" if the ball will pass point \(B\) after some time, otherwise \(y\) is " \(No\)".

Sample Input

2
0 0 1
2 2 0 1
-1 -1
0 0 1
-1 2 1 -1
1 2

Sample Output

Case #1: No
Case #2: Yes

Source

2015ACM/ICPC亚洲区上海站-重现赛(感谢华东理工)

Solution

题意

在光滑平面上有一个圆,圆外有两点 \(a\),\(b\),给定 \(a\) 的方向向量,求 \(a\) 运动一段时间后能否到达 \(b\)(\(a\) 碰到圆后没有反弹没有能量损失)。

思路

分类讨论一下。

点 \(a\) 的运动在圆外或者与圆相切时直接判断。

注意是射线,下图的情况是不行的。

相交时如果点 \(b\) 在圆的另一边也是不行的。

相交时有两种情况,一种是不经过反射就到达点 \(b\),另一种是经过反射才到达点 \(b\)。

反射后的射线求一下对称点即可。(代码中的 P3 和 P4 点就是下图中的两点)

模板来自kuangbin的计算几何模板。

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-8;
const db inf = 1e18;
const db pi = acos(-1.0); inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
} struct Point{
double x,y;
Point(){}
Point(double _x,double _y){
x = _x;
y = _y;
}
void input(){
scanf("%lf%lf",&x,&y);
}
bool operator == (Point b)const{
return dcmp(x-b.x) == 0 && dcmp(y-b.y) == 0;
}
bool operator < (Point b)const{
return dcmp(x-b.x)== 0?dcmp(y-b.y)<0:x<b.x;
}
Point operator -(const Point &b)const{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const{
return x*b.x + y*b.y;
}
double len(){
return hypot(x,y);
}
double len2(){
return x*x + y*y;
}
double distance(Point p){
return hypot(x-p.x,y-p.y);
}
db dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
db dis(const Point a) {
return sqrt(dis2(a));
}
Point operator +(const Point &b)const{
return Point(x+b.x,y+b.y);
}
Point operator *(const double &k)const{
return Point(x*k,y*k);
}
Point operator /(const double &k)const{
return Point(x/k,y/k);
}
double rad(Point a,Point b){
Point p = *this;
return fabs(atan2( fabs((a-p)^(b-p)),(a-p)*(b-p) ));
}
Point trunc(double r){
double l = len();
if(!dcmp(l))return *this;
r /= l;
return Point(x*r,y*r);
}
}; struct Line{
Point s,e;
Line(){}
Line(Point _s,Point _e){
s = _s;
e = _e;
}
void input(){
s.input();
e.input();
}
void adjust(){
if(e < s)swap(s,e);
}
double length(){
return s.distance(e);
}
double angle(){
double k = atan2(e.y-s.y,e.x-s.x);
if(dcmp(k) < 0)k += pi;
if(dcmp(k-pi) == 0)k -= pi;
return k;
}
int relation(Point p){
int c = dcmp((p-s)^(e-s));
if(c < 0)return 1;
else if(c > 0)return 2;
else return 3;
}
double dispointtoline(Point p){
return fabs((p-s)^(e-s))/length();
}
// 点 p 在直线上的投影
Point lineprog(Point p){
return s + ( ((e-s)*((e-s)*(p-s)))/((e-s).len2()) );
}
// 点 p 关于直线的对称点
Point symmetrypoint(Point p){
Point q = lineprog(p);
return Point(2*q.x-p.x,2*q.y-p.y);
}
}; struct Circle{
Point p;
double r;
Circle(){}
Circle(Point _p,double _r){
p = _p;
r = _r;
}
void input(){
p.input();
scanf("%lf",&r);
} int relationline(Line v){
double dst = v.dispointtoline(p);
if(dcmp(dst-r) < 0)return 2;
else if(dcmp(dst-r) == 0)return 1;
return 0;
}
// 直线和圆的交点
int pointcrossline(Line v,Point &p1,Point &p2){
if(!(*this).relationline(v))return 0;
Point a = v.lineprog(p);
double d = v.dispointtoline(p);
d = sqrt(r*r-d*d);
if(dcmp(d) == 0){
p1 = a;
p2 = a;
return 1;
}
p1 = a + (v.e-v.s).trunc(d);
p2 = a - (v.e-v.s).trunc(d);
return 2;
}
}; int main() {
int T;
scanf("%d", &T);
int kase = 0;
while(T--) {
Circle o;
o.input();
Point a, b, c;
a.input();
Point v;
v.input(); // 方向向量
b.input();
c = a + v;
Line l = Line(a, c); // 射线ac代表a运动的方向
Point p1, p2, p3;
int cnt = o.pointcrossline(l, p1, p2); // 求直线ac与圆的交点 if(cnt == 2) { // 判断交点在线段外还是线段内
if((p1 - a)*(c - a) < 0) {
cnt = 0;
}
}
if(cnt == 0 || cnt == 1) { // 没有交点或者直线ac与圆相切
// 判断射线ac是否经过点b
if(dcmp((b - a)^(c - a)) == 0 && dcmp((b - a)*(c - a)) > 0) {
printf("Case #%d: Yes\n", ++kase);
continue;
} else {
printf("Case #%d: No\n", ++kase);
continue;
}
} else {
// 找从圆外进入圆内的一个交点 p3
if(p1.dis2(a) < p2.dis2(a)) {
p3 = p1;
} else {
p3 = p2;
}
// 判断点b是否在线段ap3上
if(dcmp((b - a)^(c - a)) == 0 && dcmp((b - a)*(c - a)) > 0) {
if((p3 - a)*(p3 - b) < 0) {
printf("Case #%d: No\n", ++kase);
continue;
} else {
printf("Case #%d: Yes\n", ++kase);
continue;
}
}
// 反弹的情况
Line tmp = Line(o.p, p3);
Point p4 = tmp.symmetrypoint(a); // 反射后的一个点 点a关于圆心到交点p3所在直线的对称点
// 判断反射后能否到达点b
if(dcmp((b - p3)^(p4 - p3)) == 0 && dcmp((b - p3)*(p4 - p3)) > 0) {
printf("Case #%d: Yes\n", ++kase);
continue;
} else {
printf("Case #%d: No\n", ++kase);
continue;
}
}
}
return 0;
}

2015 ACM-ICPC 亚洲区上海站 A - An Easy Physics Problem (计算几何)的更多相关文章

  1. HDU 5572 An Easy Physics Problem (计算几何+对称点模板)

    HDU 5572 An Easy Physics Problem (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5572 Descripti ...

  2. hdu 5444 Elven Postman(二叉树)——2015 ACM/ICPC Asia Regional Changchun Online

    Problem Description Elves are very peculiar creatures. As we all know, they can live for a very long ...

  3. 2016 ACM/ICPC亚洲区青岛站现场赛(部分题解)

    摘要 本文主要列举并求解了2016 ACM/ICPC亚洲区青岛站现场赛的部分真题,着重介绍了各个题目的解题思路,结合详细的AC代码,意在熟悉青岛赛区的出题策略,以备战2018青岛站现场赛. HDU 5 ...

  4. (并查集)Travel -- hdu -- 5441(2015 ACM/ICPC Asia Regional Changchun Online )

    http://acm.hdu.edu.cn/showproblem.php?pid=5441 Travel Time Limit: 1500/1000 MS (Java/Others)    Memo ...

  5. (二叉树)Elven Postman -- HDU -- 54444(2015 ACM/ICPC Asia Regional Changchun Online)

    http://acm.hdu.edu.cn/showproblem.php?pid=5444 Elven Postman Time Limit: 1500/1000 MS (Java/Others)  ...

  6. 2015 ACM/ICPC Asia Regional Changchun Online HDU 5444 Elven Postman【二叉排序树的建树和遍历查找】

    Elven Postman Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  7. hdu 5572 An Easy Physics Problem 圆+直线

    An Easy Physics Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  8. HDU 5572--An Easy Physics Problem(射线和圆的交点)

    An Easy Physics Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  9. 2015 ACM / ICPC 亚洲区域赛总结(长春站&北京站)

    队名:Unlimited Code Works(无尽编码)  队员:Wu.Wang.Zhou 先说一下队伍:Wu是大三学长:Wang高中noip省一:我最渣,去年来大学开始学的a+b,参加今年区域赛之 ...

随机推荐

  1. 练习1-20 编写程序detab,将输入中的制表符替换成适当数目的空格.

    1.问题描述 编写程序detab,将输入中的制表符替换成适当数目的空格,使空格充满到下一个制表符终止位的地方. 假设制表符终止位的位置是固定的, 换句话说每隔n列就会出现一个制表符终止位. 2.描述 ...

  2. Asp.Net Core 第05局:读取配置

    前言 本文介绍Asp.Net Core 读取配置文件. 环境 1.Visual Studio 2017 2.Asp.Net Core 2.2 开局 前期准备             1.添加app.j ...

  3. Linux操作系统(一)_常用命令

    1.系统工作命令 date  显示/设置系统时间或日期 date:显示时间 date -s “20190319 11:35:56”:设置时间 clock  显示设置硬件时钟 clock -s:以硬件时 ...

  4. 【awk】 判断是不是纯ascii串

    筛选出纯ascii串: awk '{ l = length($0); for (i = l; i > 0; i--) { if (substr($0,i,1) > "\177&q ...

  5. es6 Promise.reject()方法

    es6 Promise.reject()方法:https://blog.csdn.net/ixygj197875/article/details/79188195

  6. go 语言结构控制

    if  else 结构: #第一种 if condition { // do something } #第二种 if condition { // do something } else { // d ...

  7. K8S入门系列之必备扩展组件--> coredns(四)

    摘要: 集群其他组件全部完成后我们应当部署集群 DNS 使 service 等能够正常解析,1.11版本coredns已经取代kube-dns成为集群默认dns. https://github.com ...

  8. Java面试宝典(3)Java基础部分

    51.启动一个线程是用run()还是start()? . 启动一个线程是调用start()方法,使线程就绪状态,以后可以被调度为运行状态,一个线程必须关联一些具体的执行代码,run()方法是该线程所关 ...

  9. Ubuntu下安装chrome浏览器步骤

    进入 Ubuntu 18.04 桌面,按下 Ctrl + Alt + t 键盘组合键,启动终端. 也可以按下 Win 键(或叫 Super 键),在 Dash 的搜索框中输入 terminal 或“终 ...

  10. JQuery通过URL获取图片宽高

    var img_url ='https://www.baidu.com/img/bd_logo1.png'; // 创建对象 var img = new Image(); // 改变图片的src im ...