$有a_{1}个1,a_{2}个2,...,a_{n}个n(n<=15,a_{n}<=5),求排成一列相邻位不相同的方案数。$


关于这题的教训记录:

  • 学会对于复杂的影响分开计,善于发现整体变化,用整体法(没错就是和物理那种差不多)。
  • 推dp方程时怕边界问题不好处理时可以采用向前推的方法,就如$f[x]=f[i]+...$,可以(部分)避免越界。

我好菜啊。。除了个dp状态设计对了其他什么都没写上来qwq。基于每次插入时数字的数量都不固定,所以我可以设法将其固定下来。按顺序依次插入1,2,3,...,n即可。因为我是要统计相同不相邻方案,转移的时候肯定是插空啊,所以再设计一维表示有多少个相邻相同的($f[i][j]$),这样就好做了。然而我在这里卡主了。。因为我看数据每个数字最多5个嘛,分类大力讨论一下的事情。然而讨论到3的时候我已经崩溃掉了。觉得写法有问题,但是又不知道怎么简化。

磕了几小时没出来QwQ,翻了题解%%%,发现还是思路狭窄了啊。每个数k个,因为要往空挡里面插,不算几张合在一起的话,分开的情况是很容易想的。而我有连续数字插入的时候,可以枚举其分组。分k组的时候,这些牌单独来看是会产生出新的$n-k$个连续位的。再看我插入时,把连续数字当做整体(就是看成一个数字),插入之前的连续位空挡相当于把他填起来了,否则无影响。所以枚举插到数字$i$,枚举之前有$j$空位连续数字,当下分为$k$组,插到之前$j$个空位里的有$l$个,之前方案$f[i][j]$,$j$个空位中选出来$l$个是$C_{j}^{l}$,剩下的非连续数字的空位还要再选$C_{sum[i-1]+1-j}^{k-l}$个,这些空位里去填$k$组,问题转为一排数字划为k组的不同方案,是经典隔板问题,有$C_{a[i]-1}^{k-1}$种。所以dp方程就出来啦。见code。可以感性认识这是不重不漏的。(??!)

可能我组合计数还是太差了啊。几星期后到数学专题去好好补一发算了。。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define dddbg(x,y,z) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<" "<<#z<<" = "<<z<<endl
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const ll P=1e9+;
int f[][],fac[],C[][];
int T,n,s[],sum[];
inline void inc(int&A,int B){A+=B;A>=P?A-=P:;}
inline void preprocess(){
C[][]=;
for(register int i=;i<=;++i){C[i][]=;for(register int j=;j<=;++j)C[i][j]=(0ll+C[i-][j]+C[i-][j-])%P;}
} int main(){//freopen("test.in","r",stdin);freopen("test.out","w",stdout);
preprocess();read(n);
for(register int i=;i<=n;++i)read(s[i]);
f[][s[]-]=;
for(register int i=;i<=n;++i)sum[i]=s[i]+sum[i-];
for(register int i=;i<=n;++i)
for(register int j=;j<=sum[i-]-i+;++j)
for(register int k=;k<=s[i];++k)
for(register int l=;l<=_min(j,k);++l)
inc(f[i][j+s[i]-k-l],f[i-][j]*1ll*C[j][l]%P*C[sum[i-]+-j][k-l]%P*C[s[i]-][k-]%P);
printf("%d\n",f[n][]);
return ;
}

hihocoder扑克牌:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define dddbg(x,y,z) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<" "<<#z<<" = "<<z<<endl
using namespace std;
typedef unsigned long long ull;
typedef pair<int,int> pii;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=;
ull f[N][],fac[],C[][];
int T,n,cnt[N],s[N],sum[N];
char ch[]; int main(){//freopen("test.in","r",stdin);freopen("test.out","w",stdout);
read(T);fac[]=,fac[]=,fac[]=,fac[]=;C[][]=;
for(register int i=;i<=;++i){
C[i][]=;
for(register int j=;j<=;++j)C[i][j]=C[i-][j]+C[i-][j-];
}
for(register int o=;o<=T;++o){
read(n);memset(cnt,,sizeof cnt);
for(register int i=;i<=n;++i){
scanf("%s",ch+);int x=ch[]&;
if(ch[]=='A')x=;else if(ch[]=='T')x=;else if(ch[]=='J')x=;else if(ch[]=='Q')x=;else if(ch[]=='K')x=;
++cnt[x];
}n=;
for(register int i=;i<=;++i)if(cnt[i])s[++n]=cnt[i],sum[n]=s[n]+sum[n-];
memset(f,,sizeof f);f[][s[]-]=;
for(register int i=;i<=n;++i)
for(register int j=;j<=sum[i-]-i+;++j)
for(register int k=;k<=s[i];++k)
for(register int l=;l<=_min(j,k);++l)
f[i][j+s[i]-k-l]+=f[i-][j]*C[j][l]*C[sum[i-]+-j][k-l]*C[s[i]-][k-];
for(register int i=;i<=n;++i)f[n][]*=fac[s[i]];
printf("Case #%d: %llu\n",o,f[n][]);
}
return ;
}

BZOJ1079 [SCOI2008]着色方案[组合计数DP]的更多相关文章

  1. BZOJ1079:[SCOI2008]着色方案(DP)

    Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个 ...

  2. BZOJ1079 [SCOI2008]着色方案 【dp记忆化搜索】

    题目 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得很难看 ...

  3. [luogu2476][bzoj1079][SCOI2008]着色方案【动态规划】

    题目描述 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得很难 ...

  4. BZOJ1079 [SCOI2008]着色方案 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1079 题目概括 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的 ...

  5. BZOJ1079: [SCOI2008]着色方案 (记忆化搜索)

    题意:有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木块涂相同色显得很 ...

  6. 2018.10.20 bzoj1079: [SCOI2008]着色方案(多维dp)

    传送门 dp妙题. f[a][b][c][d][e][last]f[a][b][c][d][e][last]f[a][b][c][d][e][last]表示还剩下aaa个可以用一次的,还剩下bbb个可 ...

  7. bzoj1079: [SCOI2008]着色方案

    dp.以上次染色时用的颜色的数量和每种数量所含有的颜色作状态. #include<cstdio> #include<algorithm> #include<cstring ...

  8. 【记忆化搜索】bzoj1079 [SCOI2008]着色方案

    #include<cstring> #include<cstdio> using namespace std; #define MOD 1000000007 typedef l ...

  9. bzoj1079: [SCOI2008]着色方案

    ci<=5直接想到的就是5维dp了...dp方程YY起来很好玩...写成记忆化搜索比较容易 #include<cstdio> #include<cstring> #inc ...

随机推荐

  1. 数据中心网络中的40GBASE-T

    数据中心网络基础设施正在见证由不断增长的带宽和网络性能需求推动的变革.10 千兆位以太网是当今数据中心的实际标准,而 40G 以太网的采用率越来越高.虽然 40G 以太网标准已存在于 SM 光纤和基于 ...

  2. fiddler的使用:抓包定位、模拟弱网

    一.fiddler抓包定位 Fiddler是一个http协议调试代理工具,它能够记录并检查所有你的电脑和互联网之间的http通讯,设置断点,查看所有的“进出”Fiddler的数据(cookie,htm ...

  3. 【HANA系列】SAP HANA中null变成问号的问题

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列]SAP HANA中null变成问 ...

  4. flask 之(三) --- 筛选|分页|过滤

    筛选 查询数据筛选语法:类名.query.筛选符 .all( ):获取结果集:.count( ):获取查询到的对象数量 类名.query.filter(类名.属性.运算符('xxx')).all() ...

  5. python高级 之(四) --- 模块方法

    模块 时间模块:time/datatime/calendar. 系统操作文件模块:os time模块 介绍 import time # 获取当前时间, 结果是存在时间元组中的.星期一是从0开始的 # ...

  6. java 数组学习

    遍历数组 --- for和foreach int[][] A = {{2,4},{3,5}}; int i = 0; for (int[] is : A) { i++; int j = 0; for ...

  7. JAVA -数据类型与表达式---数据类型转换

    数据类型转换技术 Java中,数据转换的方式有三种:*赋值类型转换*提升类型转换*强制类型转换 1.赋值类型转换 当需要将一个类型的值赋给另一种类型的变量时,该值将被转换为新类型的值,此时就发生了赋值 ...

  8. C#追加日志文件

    追加日志文件 using System; using System.IO; class DirAppend { public static void Main() { using (StreamWri ...

  9. ASP.NET Core中使用EF Core(MySql)Code First

    ⒈添加依赖 MySql.Data.EntityFrameworkCore ⒉在appsettings.json配置文件中配置数据库连接字符串 { "Logging": { &quo ...

  10. SKCTF管理系统

    一开始是一个简洁风的登录界面 康康注册界面 嗯...也是很简洁风呢. 那让我们来查看元素(fn+f12) 没有什么有flag的迹象呢! 那我们试一下注册一个账号 这时候我们已经有解题的线索了: 获得管 ...