http://codeforces.com/contest/1201/problem/D

题意:n行m列的矩阵中,有k个targets,从[1, 1]出发,每次只能向上下左右四个方向移动一步,且只有在q个safecolumns上进行向上移动,最少需要多少次移动才能获得所有的targets。(2≤n,m,k,q≤2*10^5,q≤m)。

  

思路:

Make two arrays: left and right. left[i] is the treasure in the leftmost position in row i (0 if there are no treasures in row ii). right[i] is the treasure in the rightmost cell in row ii (0 if there are no treasures in row ii).

We can simply take out rows where there is no treasure (and add 1 to the result if there are treasure above that line, because we have to move up there).

For every row, except the last, we have to leave that row at one of the safe columns. Let's notice that the last treasure we collect in the row will be either left[i] or right[i]. Let's take a look at both possibilities: If we collect the left[i] treasure last, we have to leave the row either going left or going right to the closest safe column, because going further wouldn't worth it (consider moving up earlier and keep doing the same thing at row i+1). The same is true for right[i]. For the first row, we start at the first column, we can calculate the moves required to go up the second row at the for cells. For all the other rows, we have 4 possibilities, and we have to calculate how many moves it takes to reach the row i+1 at the 4 possible columns. For the last row, we don't have to reach a safe column, we just have to collect all the treasures there. We can count the answer for the problem from the calculated results from the previous row. Time complexity: O(16∗n)

1. 对于存在宝藏的行,最后得到的宝藏要么是最左边的要么是最右边的;

2. 假设最后拿到的是最左边的,那么可以通过这个宝藏左右最近的safecolumns离开;最后拿到的是最右边的情况也同理;

3. 对于第一行来说,若有宝藏,则获得最右边的宝藏后离开;所无宝藏,则通过离[1, 1]最近的safecolumn离开;

4. 对于其他行来说,最多可以有四种方式离开此行,最后一行不需要到达safecolumn,获得所有宝藏即可;

宝藏左右最近的safecolumn,可以通过binary search求得。

注意,若最左边的宝藏就在safecolumn上,则其左右最近的safecolumn都是此列。

#include <iostream>
#include <set>
#include <vector>
#include <algorithm>
#include <queue>
using namespace std; typedef long long LL; int findSafe(vector<int>& safes, int x){
int l = , r = safes.size()-, ret;
while(l <= r){
int m = (l+r)>>;
if(safes[m] == x)
return m;
if(safes[m] > x)
r = m - ;
else{
ret = m;
l = m + ;
}
}
return ret;
} int dist(int layer, int p1, int p2, vector<int>& leftmost, vector<int>& rightmost, vector<int>& safecol){
if(safecol[p1] > safecol[p2])
swap(p1, p2);
int d = safecol[p2] - safecol[p1];
if(rightmost[layer] > safecol[p2])
d += * (rightmost[layer]-safecol[p2]);
if(leftmost[layer] < safecol[p1])
d += * (safecol[p1]-leftmost[layer]);
return d;
} int main(){
int n, k, m, q;
cin>>n>>m>>k>>q;
vector<int> leftmost(n+, m+), rightmost(n+, ), safecol{};
for(int i=; i<k; i++){
int row, col;
cin>>row>>col;
leftmost[row] = min(leftmost[row], col);
rightmost[row] = max(rightmost[row], col);
}
for(int i=; i<q; i++){
int safe;
cin>>safe;
safecol.push_back(safe);
} sort(safecol.begin(), safecol.end()); while(leftmost[n] == m+) n--; if(n==){
cout<<rightmost[]-<<endl;
return ;
}
vector<LL> now_step{, , ,}, lst_step{, , , };
vector<int> lst_gate{-, -, -, -};
if(rightmost[] == ){
int rsafe = findSafe(safecol, );
if(safecol[rsafe] < )
rsafe++;
lst_gate[] = rsafe;
lst_step[] = safecol[rsafe]-;
}else{
int lsafe = findSafe(safecol, rightmost[]);
//cout<<rightmost[1]<<"*"<<lsafe<<endl;
lst_gate[] = lsafe;
lst_step[] = *rightmost[]-safecol[lsafe]-;
//cout<<"l10:"<<lst_step[0]<<endl;
if(safecol[lsafe]<rightmost[] && lsafe+ < safecol.size()){
lst_gate[] = lsafe+;
lst_step[] = safecol[lsafe+]-;
}
} for(int i=; i<n; i++){
if(leftmost[i] == m+){
for(int j=; j<; j++)
lst_step[j]++;
continue;
}else{
vector<int> now_gate{-, -, -, -};
int g1 = findSafe(safecol, leftmost[i]);
int g2 = findSafe(safecol, rightmost[i]);
//cout<<g1<<" "<<g2<<endl;
now_gate[] = g1;
if(safecol[g1] < leftmost[i] && g1+ < safecol.size())
now_gate[] = g1+;
now_gate[] = g2;
if(safecol[g2] < rightmost[i] && g2+ < safecol.size())
now_gate[] = g2+;
for(int j=; j<; j++){
now_step[j] = (*1e5+) * (*1e5);
for(int u=; u<; u++)
if(lst_gate[u]> && now_gate[j]>){
int d = +dist(i,now_gate[j], lst_gate[u], leftmost, rightmost, safecol);
//cout<<now_gate[j]<<" "<<lst_gate[u]<<endl;
//cout<<"d:"<<i<<" "<<d<<endl;
//cout<<"ld:"<<" "<<lst_step[u]<<endl;
now_step[j] = min(now_step[j], lst_step[u]+d);
}
}
lst_step = now_step;
lst_gate = now_gate;
}
}
LL ret = (*1e5+) * (*1e5);
for(int u=; u<; u++)
if(lst_gate[u] > ){
int d = +rightmost[n]-leftmost[n]+min(abs(rightmost[n]-safecol[lst_gate[u]]), abs(leftmost[n]-safecol[lst_gate[u]]));
//cout<<"d:"<<" "<<d<<endl;
//cout<<"lst_step:"<<lst_step[u]<<endl;
ret = min(ret, lst_step[u]+d);
}
printf("%I64d\n", ret);
return ;
}

codeforces_D. Treasure Hunting_[DP+Binary Search]的更多相关文章

  1. 96. Unique Binary Search Trees (Tree; DP)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  2. Unique Binary Search Trees(dp)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  3. Unique Binary Search Trees I&II——给定n有多少种BST可能、DP

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  4. [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  5. [LeetCode] Unique Binary Search Trees II 独一无二的二叉搜索树之二

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  6. Leetcode 86. Unique Binary Search Trees

    本题利用BST的特性来用DP求解.由于BST的性质,所以root左子树的node全部<root.而右子树的node全部>root. 左子树 = [1, j-1], root = j, 右子 ...

  7. Unique Binary Search Trees

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  8. LeetCode-96. Unique Binary Search Trees

    Description: Given n, how many structurally unique BST's (binary search trees) that store values 1.. ...

  9. LeeCode - Unique Binary Search Trees

    题目: Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For e ...

随机推荐

  1. sudo无需输入密码设置

    注意这个是无需输入密码的设置,不是无需输入sudo 1 在终端输入: sudo gedit /etc/sudoers 2 在打开文件中的root   ALL=(ALL:ALL) ALL下一行添加&qu ...

  2. set()运算

    1 计算两个list的关系时,可转化为set进行运算. 参考:https://www.runoob.com/python3/python3-set.html a =[1,4,3,5,6,6,7,7,7 ...

  3. 来自python自学者的小问题

    我想使用python的第三方库,但是我的IDE给我一个错误代码: D:\untitled\venv\Scripts\python.exe "D:/py code/venv/sxsxsxsxs ...

  4. [Python3] 018 if:我终于从分支中走出来了

    目录 0. 谁是主角 1. 从三大结构说起 (1) 顺序 (2) 分支 1) 分支的基本语法 2) 双向分支 3) 多路分支 (3) 循环 0. 谁是主角 分支是主角 我前面几篇随笔提到 if 不下2 ...

  5. 大数加减(51nod)

    1005 大数加法 给出2个大整数A,B,计算A+B的结果.     输入 第1行:大数A 第2行:大数B (A,B的长度 <= 10000 需注意:A B有可能为负数) 输出 输出A + B ...

  6. HDU-1754 I Hate It(线段树,区间最大值)

    很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少.  这让很多学生很反感. 不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问.当然,老师 ...

  7. python学习第四十六天dir( )函数用法

    dir( )函数有点像目录的意思,但是他是包含由模块定义的名称的字符串的排序列表.这个列表包含模块中定义的所有模块,变量和函数的名称. 列举其用法 import time content = dir( ...

  8. 【摘】sizeof实现

    注意sizeof是运算符,而非函数 关于sizeof的两个精巧的宏实现. 非数组的sizeof: #defne _sizeof(T) ( (size_t)((T*)0 + 1)) 数组的sizeof: ...

  9. Elasticsearch7.X 入门学习第七课笔记-----Mapping多字段与自定义Analyzer

    原文:Elasticsearch7.X 入门学习第七课笔记-----Mapping多字段与自定义Analyzer 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处 ...

  10. openstack stein部署手册 7. nova-compute

    # 安装程序包 yum install -y openstack-nova-compute # 变更配置文件 cd /etc/nova mv nova.conf nova.conf.org cat & ...