http://codeforces.com/contest/1201/problem/D

题意:n行m列的矩阵中,有k个targets,从[1, 1]出发,每次只能向上下左右四个方向移动一步,且只有在q个safecolumns上进行向上移动,最少需要多少次移动才能获得所有的targets。(2≤n,m,k,q≤2*10^5,q≤m)。

  

思路:

Make two arrays: left and right. left[i] is the treasure in the leftmost position in row i (0 if there are no treasures in row ii). right[i] is the treasure in the rightmost cell in row ii (0 if there are no treasures in row ii).

We can simply take out rows where there is no treasure (and add 1 to the result if there are treasure above that line, because we have to move up there).

For every row, except the last, we have to leave that row at one of the safe columns. Let's notice that the last treasure we collect in the row will be either left[i] or right[i]. Let's take a look at both possibilities: If we collect the left[i] treasure last, we have to leave the row either going left or going right to the closest safe column, because going further wouldn't worth it (consider moving up earlier and keep doing the same thing at row i+1). The same is true for right[i]. For the first row, we start at the first column, we can calculate the moves required to go up the second row at the for cells. For all the other rows, we have 4 possibilities, and we have to calculate how many moves it takes to reach the row i+1 at the 4 possible columns. For the last row, we don't have to reach a safe column, we just have to collect all the treasures there. We can count the answer for the problem from the calculated results from the previous row. Time complexity: O(16∗n)

1. 对于存在宝藏的行,最后得到的宝藏要么是最左边的要么是最右边的;

2. 假设最后拿到的是最左边的,那么可以通过这个宝藏左右最近的safecolumns离开;最后拿到的是最右边的情况也同理;

3. 对于第一行来说,若有宝藏,则获得最右边的宝藏后离开;所无宝藏,则通过离[1, 1]最近的safecolumn离开;

4. 对于其他行来说,最多可以有四种方式离开此行,最后一行不需要到达safecolumn,获得所有宝藏即可;

宝藏左右最近的safecolumn,可以通过binary search求得。

注意,若最左边的宝藏就在safecolumn上,则其左右最近的safecolumn都是此列。

#include <iostream>
#include <set>
#include <vector>
#include <algorithm>
#include <queue>
using namespace std; typedef long long LL; int findSafe(vector<int>& safes, int x){
int l = , r = safes.size()-, ret;
while(l <= r){
int m = (l+r)>>;
if(safes[m] == x)
return m;
if(safes[m] > x)
r = m - ;
else{
ret = m;
l = m + ;
}
}
return ret;
} int dist(int layer, int p1, int p2, vector<int>& leftmost, vector<int>& rightmost, vector<int>& safecol){
if(safecol[p1] > safecol[p2])
swap(p1, p2);
int d = safecol[p2] - safecol[p1];
if(rightmost[layer] > safecol[p2])
d += * (rightmost[layer]-safecol[p2]);
if(leftmost[layer] < safecol[p1])
d += * (safecol[p1]-leftmost[layer]);
return d;
} int main(){
int n, k, m, q;
cin>>n>>m>>k>>q;
vector<int> leftmost(n+, m+), rightmost(n+, ), safecol{};
for(int i=; i<k; i++){
int row, col;
cin>>row>>col;
leftmost[row] = min(leftmost[row], col);
rightmost[row] = max(rightmost[row], col);
}
for(int i=; i<q; i++){
int safe;
cin>>safe;
safecol.push_back(safe);
} sort(safecol.begin(), safecol.end()); while(leftmost[n] == m+) n--; if(n==){
cout<<rightmost[]-<<endl;
return ;
}
vector<LL> now_step{, , ,}, lst_step{, , , };
vector<int> lst_gate{-, -, -, -};
if(rightmost[] == ){
int rsafe = findSafe(safecol, );
if(safecol[rsafe] < )
rsafe++;
lst_gate[] = rsafe;
lst_step[] = safecol[rsafe]-;
}else{
int lsafe = findSafe(safecol, rightmost[]);
//cout<<rightmost[1]<<"*"<<lsafe<<endl;
lst_gate[] = lsafe;
lst_step[] = *rightmost[]-safecol[lsafe]-;
//cout<<"l10:"<<lst_step[0]<<endl;
if(safecol[lsafe]<rightmost[] && lsafe+ < safecol.size()){
lst_gate[] = lsafe+;
lst_step[] = safecol[lsafe+]-;
}
} for(int i=; i<n; i++){
if(leftmost[i] == m+){
for(int j=; j<; j++)
lst_step[j]++;
continue;
}else{
vector<int> now_gate{-, -, -, -};
int g1 = findSafe(safecol, leftmost[i]);
int g2 = findSafe(safecol, rightmost[i]);
//cout<<g1<<" "<<g2<<endl;
now_gate[] = g1;
if(safecol[g1] < leftmost[i] && g1+ < safecol.size())
now_gate[] = g1+;
now_gate[] = g2;
if(safecol[g2] < rightmost[i] && g2+ < safecol.size())
now_gate[] = g2+;
for(int j=; j<; j++){
now_step[j] = (*1e5+) * (*1e5);
for(int u=; u<; u++)
if(lst_gate[u]> && now_gate[j]>){
int d = +dist(i,now_gate[j], lst_gate[u], leftmost, rightmost, safecol);
//cout<<now_gate[j]<<" "<<lst_gate[u]<<endl;
//cout<<"d:"<<i<<" "<<d<<endl;
//cout<<"ld:"<<" "<<lst_step[u]<<endl;
now_step[j] = min(now_step[j], lst_step[u]+d);
}
}
lst_step = now_step;
lst_gate = now_gate;
}
}
LL ret = (*1e5+) * (*1e5);
for(int u=; u<; u++)
if(lst_gate[u] > ){
int d = +rightmost[n]-leftmost[n]+min(abs(rightmost[n]-safecol[lst_gate[u]]), abs(leftmost[n]-safecol[lst_gate[u]]));
//cout<<"d:"<<" "<<d<<endl;
//cout<<"lst_step:"<<lst_step[u]<<endl;
ret = min(ret, lst_step[u]+d);
}
printf("%I64d\n", ret);
return ;
}

codeforces_D. Treasure Hunting_[DP+Binary Search]的更多相关文章

  1. 96. Unique Binary Search Trees (Tree; DP)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  2. Unique Binary Search Trees(dp)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  3. Unique Binary Search Trees I&II——给定n有多少种BST可能、DP

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  4. [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  5. [LeetCode] Unique Binary Search Trees II 独一无二的二叉搜索树之二

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  6. Leetcode 86. Unique Binary Search Trees

    本题利用BST的特性来用DP求解.由于BST的性质,所以root左子树的node全部<root.而右子树的node全部>root. 左子树 = [1, j-1], root = j, 右子 ...

  7. Unique Binary Search Trees

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  8. LeetCode-96. Unique Binary Search Trees

    Description: Given n, how many structurally unique BST's (binary search trees) that store values 1.. ...

  9. LeeCode - Unique Binary Search Trees

    题目: Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For e ...

随机推荐

  1. usb接口类型 简单分类辨识

    usb接口类型 简单分类辨识 - [相似百科] 庆欣 0.0 4 人赞同了该文章 1. 先放图,随着越来越多的接触智能设备,会遇到各种各样的usb接口,对于很多人来说,接口类型只有:usb接口,安卓接 ...

  2. vue 常用插件,保存

    UI组件 element- 饿了么出品的Vue2的web UI工具套件 Vux- 基于Vue和WeUI的组件库 mint-ui- Vue 2的移动UI元素 iview- 基于 Vuejs 的开源 UI ...

  3. Vue入门---安装及常用指令介绍

    1.安装 BootCDN----官网https://www.bootcdn.cn/ <script src="https://cdn.bootcss.com/vue/2.6.10/vu ...

  4. [Web 前端] 010 css 常用的边框设置

    css 常用边框属性 概览 参数 释义 border u设置边框属性(可以多个) border-color 边框颜色 border-style 边框样式solid 实线,dotted 点状线,dash ...

  5. CentOS7 修复MBR引导

    为了达到实验目的,首先破坏MBR引导bootloader 重启系统发现系统进不去了,这正是我们想要的 重启进入系统救援模式,输入以下命令重建MBR引导bootloader 重启,可以正常引导进入系统

  6. MySQL-第十一篇JDBC典型用法

    1.JDBC常用方式      1>DriverManager:管理JDBC驱动的服务类.主要用于获取Connection.其主要包含的方法: public static synchronize ...

  7. 解决MarkDown打开出现:awesomium web-brower framework This view has crashed

    当在windows 8 以上操作系统安装markdown 的时候,可能会出现这样的错误 解决方法: 官网链接:http://markdownpad.com/faq.html#livepreview-d ...

  8. HDU 6631 line symmetric(枚举)

    首先能想到的是至少有一对相邻点或者中间间隔一个点的点对满足轴对称,那么接下来只需要枚举剩下的点对是否满足至多移动一个点可以满足要求. 第一种情况,对于所有点对都满足要求,那么Yes. 第二种情况,有一 ...

  9. FZUOJ-2275 Game

     Problem 2275 Game Accept: 159    Submit: 539 Time Limit: 1000 mSec    Memory Limit : 262144 KB  Pro ...

  10. 用户权限管理数据库设计(RBAC)

    RBAC(Role-Based Access Control,基于角色的访问控制),就是用户通过角色与权限进行关联.简单地说,一个用户拥有若干角色,每一个角色拥有若干权限.这样,就构造成“用户-角色- ...