CF960G Bandit Blues 第一类斯特林数+分治+FFT
题目传送门
https://codeforces.com/contest/960/problem/G
题解
首先整个排列的最大值一定是 \(A\) 个前缀最大值的最后一个,也是 \(B\) 个后缀最大值的最后一个。
那么枚举一下最大值的位置为 \(i\),那么左右两边各选一些数的方案数为 \(\binom {n-1}{i-1}\)。
然后,左边有 \(i-1\) 个数,要分成 \(A-1\) 个部分,每一个部分的第一个数是所有数中最大的,并且每一个部分之间的最大值要递增。
可以发现这个问题等价于把 \(i-1\) 个数分成 \(A-1\) 个环——不是排列是因为第一个数的位置是固定的。因此可以很容易地写出答案
\]
发现既然是先把一堆数分成两份再每一份分成 \(A-1\) 和 \(B-1\) 个环,那么也可以看成先分成 \(A+B-2\) 个环然后再把环分成两份。
因此方案数等价于
\]
求第一类斯特林数可以用分治+FFT。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I>
inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 4e5 + 7;
const int P = 998244353;
const int Gi = 332748118;
const int G = 3;
int n, Aa, Bb, nlg;
int A[N], B[N], pw[20][N], cc[20];
int fac[N], inv[N], ifac[N];
inline void ycl(const int &n = ::n) {
fac[0] = 1; for (int i = 1; i <= n; ++i) fac[i] = (ll)fac[i - 1] * i % P;
inv[1] = 1; for (int i = 2; i <= n; ++i) inv[i] = (ll)(P - P / i) * inv[P % i] % P;
ifac[0] = 1; for (int i = 1; i <= n; ++i) ifac[i] = (ll)ifac[i - 1] * inv[i] % P;
}
inline int C(int x, int y) {
if (x < y) return 0;
return (ll)fac[x] * ifac[y] % P * ifac[x - y] % P;
}
inline int smod(int x) { return x >= P ? x - P : x; }
inline void sadd(int &x, const int &y) { x += y; x >= P ? x -= P : x; }
inline int fpow(int x, int y) {
int ans = 1;
for (; y; y >>= 1, x = (ll)x * x % P) if (y & 1) ans = (ll)ans * x % P;
return ans;
}
inline void NTT(int *a, int n, int f) {
for (int i = 0, j = 0; i < n; ++i) {
if (i > j) std::swap(a[i], a[j]);
for (int l = n >> 1; (j ^= l) < l; l >>= 1) ;
}
for (int i = 1; i < n; i <<= 1) {
int w = fpow(f > 0 ? G : Gi, (P - 1) / (i << 1));
for (int j = 0; j < n; j += i << 1)
for (int k = 0, e = 1; k < i; ++k, e = (ll)e * w % P) {
int x = a[j + k], y = (ll)e * a[i + j + k] % P;
a[j + k] = smod(x + y), a[i + j + k] = smod(x + P - y);
}
}
if (f < 0) for (int i = 0, p = fpow(n, P - 2); i < n; ++i) a[i] = (ll)a[i] * p % P;
}
inline void Mul(int *a, int *b, int *c, int n, int m) {
int l = 1;
while (l <= n + m) l <<= 1;
for (int i = 0; i <= n; ++i) A[i] = a[i];
for (int i = n + 1; i < l; ++i) A[i] = 0;
for (int i = 0; i <= m; ++i) B[i] = b[i];
for (int i = m + 1; i < l; ++i) B[i] = 0;
NTT(A, l, 1), NTT(B, l, 1);
for (int i = 0; i < l; ++i) A[i] = (ll)A[i] * B[i] % P;
NTT(A, l, -1);
for (int i = 0; i <= n + m; ++i) c[i] = A[i];
}
int a[N], b[N], c[N];
inline int Calc_Strling1(int n, int m) {
if (!n) return m == 0;
if (m > n || m <= 0) return 0;
a[1] = 1;
for (int k = 0; k < nlg; ++k) {
int l = cc[k];
for (int i = 0; i <= l; ++i) b[i] = (ll)a[l - i] * fac[l - i] % P
for (int i = 0; i <= l; ++i) c[i] = (ll)pw[k][i] * ifac[i] % P;
Mul(b, c, b, l, l);
for (int i = 0; i <= l; ++i) c[i] = (ll)b[l - i] * ifac[i] % P;
Mul(a, c, a, l, l);
if (cc[k + 1] & 1) {
l = cc[k + 1];
for (int i = l; i; --i) a[i] = (a[i - 1] + (l - 1ll) * a[i]) % P;
a[0] = (l - 1ll) * a[0] % P;
}
}
return a[m];
}
inline void work() {
ycl();
cc[0] = n - 1;
while (cc[nlg] >> 1) cc[nlg + 1] = cc[nlg] >> 1, ++nlg;
std::reverse(cc, cc + nlg + 1);
for (int i = 0; i < nlg; ++i) {
pw[i][0] = 1;
for (int j = 1; j <= n; ++j) pw[i][j] = (ll)pw[i][j - 1] * cc[i] % P;
}
printf("%I64d\n", (ll)Calc_Strling1(n - 1, Aa + Bb - 2) * C(Aa + Bb - 2, Aa - 1) % P);
}
inline void init() {
read(n), read(Aa), read(Bb);
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
CF960G Bandit Blues 第一类斯特林数+分治+FFT的更多相关文章
- [CF960G]Bandit Blues(第一类斯特林数+分治卷积)
Solution: 先考虑前缀,设 \(f(i, j)\) 为长度为 \(i\) 的排列中满足前缀最大值为自己的数有 \(j\) 个的排列数. 假设新加一个数 \(i+1\) 那么会有: \[ f ...
- CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增
传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...
- CF960G Bandit Blues 【第一类斯特林数 + 分治NTT】
题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\be ...
- Codeforces960G Bandit Blues 【斯特林数】【FFT】
题目大意: 求满足比之前的任何数小的有A个,比之后的任何数小的有B个的长度为n的排列个数. 题目分析: 首先写出递推式,设s(n,k)表示长度为n的排列,比之前的数小的数有k个. 我们假设新加入的数为 ...
- CF960G-Bandit Blues【第一类斯特林数,分治,NTT】
正题 题目链接:https://www.luogu.com.cn/problem/CF960G 题目大意 求有多少个长度为\(n\)的排列,使得有\(A\)个前缀最大值和\(B\)个后缀最大值. \( ...
- 【CF960G】Bandit Blues(第一类斯特林数,FFT)
[CF960G]Bandit Blues(第一类斯特林数,FFT) 题面 洛谷 CF 求前缀最大值有\(a\)个,后缀最大值有\(b\)个的长度为\(n\)的排列个数. 题解 完完全全就是[FJOI] ...
- CF960G Bandit Blues 分治+NTT(第一类斯特林数)
$ \color{#0066ff}{ 题目描述 }$ 给你三个正整数 \(n\),\(a\),\(b\),定义 \(A\) 为一个排列中是前缀最大值的数的个数,定义 \(B\) 为一个排列中是后缀最大 ...
- CF960G Bandit Blues(第一类斯特林数)
传送门 可以去看看litble巨巨关于第一类斯特林数的总结 设\(f(i,j)\)为\(i\)个数的排列中有\(j\)个数是前缀最大数的方案数,枚举最小的数的位置,则有递推式\(f(i,j)=f(i- ...
- 【cf960G】G. Bandit Blues(第一类斯特林数)
传送门 题意: 现在有一个人分别从\(1,n\)两点出发,包中有一个物品价值一开始为\(0\),每遇到一个价值比包中物品高的就交换两个物品. 现在已知这个人从左边出发交换了\(a\)次,从右边出发交换 ...
随机推荐
- win7 开机,或重启自动启动 该文件下的
win7 开机,或重启自动启动 该文件下的: 把桌面上快捷键放入文件内就行 C:\Users\Administrator\AppData\Roaming\Microsoft\Windows\Start ...
- 如何删除发布服务器distribution
在建立发布服务器后自动生成distribution数据库为系统数据库,drop无法删除,实际删除方法如下:在“对象资源管理器”-“复制”上点击右键,选择“禁用发布和分发”,依次执行即可完成该系统数据库 ...
- PHPcms编辑器如何粘贴带格式的word文档
在之前在工作中遇到在富文本编辑器中粘贴图片不能展示的问题,于是各种网上扒拉,终于找到解决方案,在这里感谢一下知乎中众大神以及TheViper. 通过知乎提供的思路找到粘贴的原理,通过TheViper找 ...
- redis测试
1,安装redis软件 2,引入redis jar包 3,案例 package test; import java.util.List; import redis.clients.jedis.Jedi ...
- Android逆向之旅---基于对so中的函数加密技术实现so加固
一.前言 今天我们继续来介绍so加固方式,在前面一篇文章中我们介绍了对so中指定的段(section)进行加密来实现对so加固 http://blog.csdn.net/jiangwei0910410 ...
- 【HDOJ6629】string matching(exkmp)
题意:给定一个长为n的字符串,求其每个位置开始于其自身暴力匹配出相同或不同的结果的总比较次数 n<=1e6 思路:exkmp板子 #include<bits/stdc++.h> us ...
- 5 个免费的受欢迎的 SQLite 管理工具
SQLite Expert – Personal Edition SQLite Expert 提供两个版本,分别是个人版和专业版.其中个人版是免费的,提供了大多数基本的管理功能. SQLite Exp ...
- HTML表格<tr>行距调整
CSS文件中: .myTable tr{ display:block; /*将tr设置为块体元素*/ margin-bottom:5px;}
- Elasticsearch+Logstash+Kibana搭建日志平台
1 ELK简介 ELK是Elasticsearch+Logstash+Kibana的简称 ElasticSearch是一个基于Lucene的分布式全文搜索引擎,提供 RESTful API进行数据读写 ...
- 【报错】An error happened during template parsing (template: "class path resource [templates/adminManageCourse.html]")
页面显示: Whitelabel Error Page This application has no explicit mapping for /error, so you are seeing t ...