题目链接

题意 : 其实就是要求

分析 :

先暴力将次方通过第二类斯特林数转化成下降幂 ( 套路?)

然后再一步步化简、使得最外层和 N 有关的 ∑ 划掉

这里有个技巧就是

将组合数的表达式放到一边、然后通过组合意义来化简

然后就可以 O( k ^ 2 ) 算出答案了

另外化到后面其实有种产生

这里可以用另外一种方式化简

考虑其组合意义

相当于先从 n 个数中挑出 i 个数、然后再从 i 个数中取 j 个进行排列

其他数可选可不选

具体可以看 Click here

#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long

#define scs(i) scanf("%s", i)
#define sci(i) scanf("%d", &i)
#define scd(i) scanf("%lf", &i)
#define scIl(i) scanf("%I64d", &i)
#define scii(i, j) scanf("%d %d", &i, &j)
#define scdd(i, j) scanf("%lf %lf", &i, &j)
#define scIll(i, j) scanf("%I64d %I64d", &i, &j)
#define sciii(i, j, k) scanf("%d %d %d", &i, &j, &k)
#define scddd(i, j, k) scanf("%lf %lf %lf", &i, &j, &k)
#define scIlll(i, j, k) scanf("%I64d %I64d %I64d", &i, &j, &k)
#define sciiii(i, j, k, l) scanf("%d %d %d %d", &i, &j, &k, &l)
#define scdddd(i, j, k, l) scanf("%lf %lf %lf %lf", &i, &j, &k, &l)
#define scIllll(i, j, k, l) scanf("%I64d %I64d %I64d %I64d", &i, &j, &k, &l)

#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define lowbit(i) (i & (-i))
#define mem(i, j) memset(i, j, sizeof(i))

#define fir first
#define sec second
#define VI vector<int>
#define ins(i) insert(i)
#define pb(i) push_back(i)
#define pii pair<int, int>
#define VL vector<long long>
#define mk(i, j) make_pair(i, j)
#define all(i) i.begin(), i.end()
#define pll pair<long long, long long>

#define _TIME 0
#define _INPUT 0
#define _OUTPUT 0
clock_t START, END;
void __stTIME();
void __enTIME();
void __IOPUT();
using namespace std;
;
;

LL S[maxn][maxn];

inline void init()
{
    S[][] = ;
    ; i<maxn; i++){
        ; j<=i; j++){
            S[i][j] = ( S[i-][j-] + (LL)j * S[i-][j] % mod ) % mod;
        }
    }
}

LL pow_mod(LL a, LL b)
{
    a %= mod;
    LL ret = ;
    while(b){
        ) ret = ret * a % mod;
        a = a * a % mod;
        b >>= ;
    }return ret;
}

int main(void){__stTIME();__IOPUT();

    init();

    LL n, k;

    scIll(n, k);

    LL ans = ;
    LL fac = ;
    ; j<=min(n, k); j++){
        ans = (ans + ( (S[k][j] * fac % mod) * pow_mod(, n-j) ) %mod) % mod;
        fac = fac * (n-j) % mod;
    }

    ) ans--;

    printf("%I64d\n", ans);

__enTIME();;}

void __stTIME()
{
    #if _TIME
        START = clock();
    #endif
}

void __enTIME()
{
    #if _TIME
        END = clock();
        cerr<<"execute time = "<<(double)(END-START)/CLOCKS_PER_SEC<<endl;
    #endif
}

void __IOPUT()
{
    #if _INPUT
        freopen("in.txt", "r", stdin);
    #endif
    #if _OUTPUT
        freopen("out.txt", "w", stdout);
    #endif
}

Codeforces 932 E Team Work ( 第二类斯特林数、下降阶乘幂、组合数学 )的更多相关文章

  1. CF932E Team Work(第二类斯特林数)

    题目 CF932E Team Work 前置:斯特林数\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ &\sum\limits_{i=1}^n C_ ...

  2. CF932E Team Work——第二类斯特林数

    题解 n太大,而k比较小,可以O(k^2)做 想方设法争取把有关n的循环变成O(1)的式子 考虑用公式: 来替换i^k 原始的组合数C(n,i)一项,考虑能否和后面的系数分离开来,直接变成2^n处理. ...

  3. 【CF932E】Team Work(第二类斯特林数)

    [CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...

  4. Codeforces Round #100 E. New Year Garland (第二类斯特林数+dp)

    题目链接: http://codeforces.com/problemset/problem/140/E 题意: 圣诞树上挂彩球,要求从上到下挂\(n\)层彩球.已知有\(m\)种颜色的球,球的数量不 ...

  5. Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...

  6. CF932E Team Work(第二类斯特林数)

    传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...

  7. 【cf932E】E. Team Work(第二类斯特林数)

    传送门 题意: 求\(\displaystyle \sum_{i=0}^n{n\choose i}i^k,n\leq 10^9,k\leq 5000\). 思路: 将\(i^k\)用第二类斯特林数展开 ...

  8. codeforces 1278F - Cards(第二类斯特林数+二项式)

    传送门 解题过程: \(答案=\sum^n_{i=0}*C^i_n*{\frac{1}{m}}^i*{\frac{m-1}{m}}^{n-i}*i^k\) 根据第二类斯特林数的性质\(n^k=\sum ...

  9. Gym - 101147G G - The Galactic Olympics —— 组合数学 - 第二类斯特林数

    题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s m ...

随机推荐

  1. luoguP1379-八数码难题(双向bfs)

    题目链接:https://www.luogu.org/problemnew/show/P1379 题意:用字符串表示八数码,求根据给定八数码得到末状态“123804765”最少的步数. 思路:这题很方 ...

  2. python 求从1加到100的和,join的用法

    li=[] def func3(x): li.append(str(x)) if x==1: return 1 return x+func3(x-1) # print(func3(100)) re=f ...

  3. springdata的jpa配置文件application.xml

    <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.spr ...

  4. redis配置文档细节问题

    在window10环境下,redis的.conf配置文件在使用时,不可以有多余的空白符.比如为了对其在配置的前方添加两个空格. 这么做会导致redis-server使用这个配置文件的时候无法正常启动, ...

  5. Windows Runtime (RT)

    学了sl for wp 开发了1年都没入门,只能说自己的学习欲望太低了. 今天偶然才发现wrt 跟 .net 是2个东西... orz. 得抛弃 sl ,wrt才是未来的主流吧... 这篇文章不错 h ...

  6. Win32汇编-创建窗体代码

    1.一个最简单的窗体的创建 ;>>>>>>>>>>>>>>>>>>>>>& ...

  7. python基础之函数当中的装饰器

    在实际工作当中存在一个开放封闭原则 1.对扩展是开放的 为什么要对扩展开放呢? 我们说,任何一个程序,不可能在设计之初就已经想好了所有的功能并且未来不做任何更新和修改.所以我们必须允许代码扩展.添加新 ...

  8. selenium自动化测试工具模拟登陆爬取当当网top500畅销书单

    selenium自动化测试工具可谓是爬虫的利器,基本动态加载的网页都能抓取,当然随着大型网站的更新,也出现针对selenium的反爬,有些网站可以识别你是否用的是selenium访问,然后对你加以限制 ...

  9. css动画之旋转翻牌效果

    1.我们先设置两个盒子大小,颜色等等,然后定位重叠在一起,最后再进行动画设置 例子如下: <style> .box { height: 300px; width: 300px; posit ...

  10. VUE 从零开始 学习笔记 一

    最近刚跳到一个新公司 不是很忙 决定系统的学习一下VUE这个前端框架 参考官方API 好了 废话不多说 开始了 首先 说一下吧 现在很火的主流三大前端框架 Vue,Angular.React, 为什么 ...