传送门

和10-17 B 君的第三题 类似,应该算是简化版,给出了固定的点。

f[s]表示只考虑连端都在s集合中的边,s中的固定点(1或者2)能到达整个集合的方案数。

预处理c[s]表示s集合中的总边数,转移就用所有方案减去s集合中有一部分不能到达的方案,也就是枚举一个子集作为能到达的,这个子集的补集和子集之间的边方向确定了,补集内的边随便选,也就和无向图每条边选或者不选等价了。

和无向图不同的是,1能到达的点的集合为s1,2能到达的点的集合为s2的时候,(s1,s2的补集内的边随便定向,补集和s1,s2之间的边方向唯一确定),s1中的任意点不能于s2中的点有连边,因为一个点x不在s2中表明它到s2集合内的点的边都是指向s2的,那么x若在s1中,s1和s2就联通了。

一开始一直wa三个点,因为我固定一个点的时候枚举子集可以为0但是我跳出了。。。

 //Achen
#include<bits/stdc++.h>
#define For(i,a,b) for(int i=(a);i<=(b);i++)
#define Rep(i,a,b) for(int i=(a);i>=(b);i--)
#define Formylove return 0
const int N=,p=1e9+;
typedef long long LL;
typedef double db;
using namespace std;
int n,m,a[],b[],mp[][];
LL pr[],c[N],f[N],to[N];
LL ans; template<typename T> void read(T &x) {
char ch=getchar(); x=; T f=;
while(ch!='-'&&(ch<''||ch>'')) ch=getchar();
if(ch=='-') f=-,ch=getchar();
for(;ch>=''&&ch<='';ch=getchar()) x=x*+ch-''; x*=f;
} //#define ANS
int main() {
#ifdef ANS
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
#endif
read(n); read(m);
pr[]=;
For(i,,) pr[i]=2LL*pr[i-]%p;
For(i,,m) {
read(a[i]); read(b[i]);
mp[a[i]][b[i]]++;
mp[b[i]][a[i]]++;
c[pr[a[i]-]+pr[b[i]-]]++;
}
For(i,,n) {
For(j,,n) if(mp[i][j]) to[pr[i-]]|=pr[j-];
}
int up=pr[n]-;
For(i,,n-) For(s,,up) {
if(!(s&pr[i])) {
c[s|pr[i]]+=c[s];
to[s|pr[i]]|=to[s];
}
}
//For(i,1,up) printf("%d : %d\n",i,to[i]);
f[]=f[]=;
For(s,,up) {
LL t=;
for(int ss=((s-)&s);ss;ss=((ss-)&s)) {
if((!(s&)&&(s&)&&!(ss&)&&(ss&))||(!(s&)&&(s&)&&!(ss&)&&(ss&)))
t=(t+f[ss]*pr[c[s^ss]]%p)%p;
}
if((!(s&)&&(s&))||(!(s&)&&(s&))) f[s]=(pr[c[s]]-t+p)%p;
}
For(s,,up) if((s&)&&!(s&)) {
int S=(up^s)-;
for(int ss=S;;ss=((ss-)&S)) {
if((s&to[up^s^ss])!=||((up^s^ss)&to[s])!=) {
if(!ss) break; else continue;
}
ans=(ans+f[s]*f[up^s^ss]%p*pr[c[ss]]%p)%p;
if(!ss) break;
}
}
printf("%lld\n",(pr[m]-ans+p)%p);
Formylove;
}

I - Nice to Meet You的更多相关文章

  1. tomcat 7 WARNING: A context path must either be an empty string or start with a '/' and do not end with a '/'. The path [/] does not meet these criteria and has been changed to []

    tomcat 7 WARNING: A context path must either be an empty string or start with a '/' and do not end w ...

  2. bzoj1787 [Ahoi2008]Meet 紧急集合

    1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec  Memory Limit: 162 MB Submit: 2272  Solved: 1029 [Submi ...

  3. 【BZOJ-1787&1832】Meet紧急集合&聚会 倍增LCA

    1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 2259  Solved: 1023[Submit] ...

  4. How to disable Passwords must meet complexity requirements[windows 7]

    The Password complexity is a Local Policy setting named "Passwords must meet complexity require ...

  5. Codeforces Round #325 (Div. 2) F. Lizard Era: Beginning meet in the mid

    F. Lizard Era: Beginning Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  6. bzoj 1787 [Ahoi2008]Meet 紧急集合(1832 [AHOI2008]聚会)

    1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1841  Solved: 857[Submit][ ...

  7. hadoop权威指南 chapter1 Meet Hadoop

    Meet Hadoop 1.1 Data!(数据) Most of the data is locked up in the largest web properties (like search e ...

  8. BZOJ 1787: [Ahoi2008]Meet 紧急集合( 树链剖分 )

    这道题用 LCA 就可以水过去 , 但是我太弱了 QAQ 倍增写LCA总是写残...于是就写了树链剖分... 其实也不难写 , 线段树也不用用到 , 自己YY一下然后搞一搞就过了...速度还挺快的好像 ...

  9. Meet Apache Wicket

    第一次接触Wicket,如此多的内容是文字,的原贴,希望大家指正 Meet Apache Wicket By JonathanLocke, original author of Wicket 乔纳森· ...

  10. 1787: [Ahoi2008]Meet 紧急集合

    1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1482  Solved: 652[Submit][ ...

随机推荐

  1. 存储过程中的in out in out 三种类型的参数

    in 是参数的默认模式,这种模式就是在程序运行的时候已经具有值,在程序体中值不会改变. out模式定义的参数只能在过程体内部赋值,表示该参数可以将某个值传递回调用他的过程 in out 表示高参数可以 ...

  2. hdu 6092 Rikka with Subset (集合计数,01背包)

    Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...

  3. BZOJ 3622: 已经没有什么好害怕的了(二项式反演)

    传送门 解题思路 首先将\(a\),\(b\)排序,然后可以算出\(t(i)\),表示\(a(i)\)比多少个\(b(i)\)大,根据容斥套路,设\(f(k)\)表示恰好有\(k\)个\(a(i)\) ...

  4. MySQL安装/卸载

    http://jishu8.cc/2017/02/06/55/ 检查端口是否冲突:netstat nao | findstr 3307  启动服务:services.msc

  5. mysql数据权限操作

    1.创建新用户 通过root用户登录之后创建 >> grant all privileges on *.* to testuser@localhost identified by &quo ...

  6. cent OS 7 下安装 python 3.6

    step1:安装依赖环境 # yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readli ...

  7. 简单使用Laravel-admin构建一个功能强大的后台管理

    Laravel-admin可以快速构建一个功能强大的后台,方便快速开发. 以下内容记录简单使用Laravel-admin,以及遇到小错误的解决方法. Laravel-admin 依赖以下环境 需要提前 ...

  8. (3)C++复合类型

    存储数据时必须跟踪的三个属性:信息储存在何处,存储的值,存储的类型 一.数组 #include <iostream> using namespace std; int main() { / ...

  9. spring+freemarker 乱码解决办法

    这样应该可以了~ <!-- freemarker config --> <bean id="freemarkerConfig" class="org.s ...

  10. Java DOM解析器 - 解析XML文档

    使用DOM的步骤 以下是在使用DOM解析器解析文档使用的步骤. 导入XML相关的软件包. 创建DocumentBuilder 从文件或流创建一个文档 提取根元素 检查属性 检查子元素 导入XML相关的 ...