[cf1217F]Forced Online Queries Problem
可以用并查集维护连通性,删除可以用按置合并并查集,但删掉一条边后无法再维护两点的联通性了(因为产生环的边是不加入的)
暴力思路是, 考虑前i个操作后边的集合,暴力加入即可,但复杂度是$o(n^2)$的
用分块,对于每一个块,先求出前面所有块操作后边的集合,去掉这个块内删掉的边,这个并查集一定是之后这个块内每一个点都有的并查集,即计算每一个点时都恢复到这个并查集(恢复时记录下修改的点,因此也不能路径压缩)
之后用暴力的做法,这个集合大小是$o(\sqrt{n})$的,那么总复杂度就是$o(n\sqrt{n})$,可以通过
(这个算法是离线,因为它需要之后那个块内的操作,但这些操作最多只会衍生出两种操作,只要存在一个就都不要放入原并查集中即可)


1 #include<bits/stdc++.h>
2 using namespace std;
3 #define K 5000
4 #define N 200005
5 #define pii pair<int,int>
6 #define fi first
7 #define se second
8 int n,m,ans,p[N],x[N],y[N],f[N],g[N],sz[N],v1[N];
9 pii v2[N];
10 set<pii>g1,g2;
11 set<pii>::iterator it;
12 int find(int k){
13 if (k==f[k])return k;
14 return find(f[k]);
15 }
16 void check(int x,int y){
17 if (x>y)swap(x,y);
18 pii o=make_pair(x,y);
19 if (g1.find(o)!=g1.end()){
20 g1.erase(o);
21 g2.insert(o);
22 }
23 }
24 void update(pii o){
25 if (g2.find(o)==g2.end())g2.insert(o);
26 else g2.erase(o);
27 }
28 void add(int x,int y){
29 x=find(x);
30 y=find(y);
31 if (x==y)return;
32 if (sz[x]<sz[y])swap(x,y);
33 v1[++v1[0]]=y;
34 f[y]=x;
35 v2[v1[0]]=make_pair(x,sz[x]);
36 sz[x]=max(sz[x],sz[y]+1);
37 }
38 int main(){
39 scanf("%d%d",&n,&m);
40 for(int i=1;i<=m;i++)scanf("%d%d%d",&p[i],&x[i],&y[i]);
41 for(int i=1;i<=m;i+=K){
42 int k=min(m,i+K-1);
43 g2.clear();
44 for(int j=i;j<=k;j++)
45 if (p[j]==1){
46 check(x[j],y[j]);
47 check(x[j]%n+1,y[j]%n+1);
48 }
49 for(int j=1;j<=n;j++)f[j]=j;
50 for(it=g1.begin();it!=g1.end();it++)add((*it).fi,(*it).se);
51 v1[0]=0;
52 for(int j=i;j<=k;j++){
53 x[j]=(x[j]+ans-1)%n+1;
54 y[j]=(y[j]+ans-1)%n+1;
55 if (x[j]>y[j])swap(x[j],y[j]);
56 if (p[j]==1)update(make_pair(x[j],y[j]));
57 else{
58 for(int l=1;l<=v1[0];l++){
59 f[v1[l]]=v1[l];
60 sz[v2[l].fi]=v2[l].se;
61 }
62 v1[0]=0;
63 for(it=g2.begin();it!=g2.end();it++)add((*it).fi,(*it).se);
64 printf("%d",ans=(find(x[j])==find(y[j])));
65 }
66 }
67 for(it=g2.begin();it!=g2.end();it++)g1.insert(*it);
68 }
69 }
[cf1217F]Forced Online Queries Problem的更多相关文章
- 【CF1217F】Forced Online Queries Problem
题意 题目链接 动态图连通性,加密方式为 \((x+l-1)\bmod n +1\) (\(l=[上一次询问的两点连通]\)). 点数 \(n\),操作数 \(m\) \(\le 2\times 10 ...
- @codeforces - 1217F@ Forced Online Queries Problem
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 n 个点的无向图,标号从 1 到 n.一开始没有任何边 ...
- [Codeforces 863D]Yet Another Array Queries Problem
Description You are given an array a of size n, and q queries to it. There are queries of two types: ...
- 863D - Yet Another Array Queries Problem(思维)
原题连接:http://codeforces.com/problemset/problem/863/D 题意:对a数列有两种操作: 1 l r ,[l, r] 区间的数字滚动,即a[i+1]=a[i] ...
- Yet Another Array Queries Problem CodeForces - 863D (暴力/思维)
You are given an array a of size n, and q queries to it. There are queries of two types: 1 li ri — p ...
- Educational Codeforces Round 72 (Rated for Div. 2) Solution
传送门 A. Creating a Character 设读入的数据分别为 $a,b,c$ 对于一种合法的分配,设分了 $x$ 给 $a$ 那么有 $a+x>b+(c-x)$,整理得到 $x&g ...
- Codechef Dynamic Trees and Queries
Home » Practice(Hard) » Dynamic Trees and Queries Problem Code: ANUDTQSubmit https://www.codechef.co ...
- CodeChef---- February Challenge 2018----Chef and odd queries(复杂度分块计算)
链接 https://www.codechef.com/FEB18/problems/CHANOQ/ Chef and odd queries Problem Code: CHANOQ Chef ...
- CodeChef Gcd Queries
Gcd Queries Problem code: GCDQ Submit All Submissions All submissions for this problem are ava ...
随机推荐
- Go语言之Goroutine与信道、异常处理
一.Goroutine Go 协程可以看做成一个轻量级的线程,Go 协程相比于线程的优势: Goroutine 的成本更低大小只有 2 kb 左右,线程有几个兆. Goroutine 会复用线程,比如 ...
- Spring自动装配歧义性笔记
Spring自动装配歧义性笔记 如果系统中存在两个都实现了同一接口的类,Spring在进行@Autowired自动装配的时候,会选择哪一个?如下: // 一下两个类均被标记为bean @Compone ...
- pymysql基础
一,基本使用 倒入模块 import pymysql conn=pymysql.connect( host="数据库地址,本机是localhost,别的机器是ip", user=& ...
- L1-023 输出GPLT (20 分) java题解 GPLT天梯赛防坑技巧
上题目先 给定一个长度不超过10000的.仅由英文字母构成的字符串.请将字符重新调整顺序,按GPLTGPLT....这样的顺序输出,并忽略其它字符.当然,四种字符(不区分大小写)的个数不一定是一样多的 ...
- 深入理解Java虚拟机之垃圾回收篇
垃圾回收简介 Java 会对内存进行自动分配与回收管理,使上层业务更加安全,方便地使用内存实现程序逻辑.在不同的 JVM 实现及不同的回收机制中,堆内存的划分方式是不一样的. 简要地介绍下垃圾 ...
- JVM详解(四)——运行时数据区-堆
一.堆 1.介绍 Java运行程序对应一个进程,一个进程就对应一个JVM实例.一个JVM实例就有一个运行时数据区(Runtime),Runtime里面,就只有一个堆,一个方法区.这里也阐述了,方法区和 ...
- 时间轮机制在Redisson分布式锁中的实际应用以及时间轮源码分析
本篇文章主要基于Redisson中实现的分布式锁机制继续进行展开,分析Redisson中的时间轮机制. 在前面分析的Redisson的分布式锁实现中,有一个Watch Dog机制来对锁键进行续约,代码 ...
- vue介绍啊
声明式渲染:vue的核心是一个允许你才用一个简洁的模板语法来声明式的将数据渲染进行DOM的系统 html部分:<div id="app"> {{message}}< ...
- stat命令的实现
任务详情 学习使用stat(1),并用C语言实现 提交学习stat(1)的截图 man -k ,grep -r的使用 伪代码 产品代码 mystate.c,提交码云链接 测试代码,mystat 与st ...
- QT判断文件/目录是否存在
最近在用qt写一个ui,遇到删除sd卡中的文件失败情况,有些时候是存在删除链表里面的文件在sd卡上已经不存在了,导致失败,以为我的链表是定时刷新的,但是文件是实时更新会同步覆盖的.这样就存在可能上一秒 ...