[cf1168E]Xor Permutations
(与题目中下标不同,这里令下标为$[0,2^{k})$来方便运算)
根据异或的性质,显然有解的必要条件是$\bigoplus_{i=0}^{2^{k}-1}a_{i}=0$
在此基础上,我们考虑构造——
定义$solve(i,j,x)$表示在当前$p_{i}$和$q_{i}$的基础上,构造$p'_{i}$与$q'_{i}$,使得:
1.$\forall 0\le t<2^{k}且t\ne i且t\ne j,p_{t}\oplus q_{t}=p'_{t}\oplus q'_{t}$
2.$p_{i}\oplus q_{i}=p'_{i}\oplus q'_{i}\oplus x$,$p_{j}\oplus q_{j}=p'_{j}\oplus q'_{j}\oplus x$
初始令$\forall 0\le i<2^{k},p_{i}=q_{i}=i$,接下来只需要不断执行$solve(i,i+1,\bigoplus_{j=0}^{i}a_{j})$即可
考虑如何执行$solve(i,j,x)$这个操作,首先若$x=0$直接退出,否则继续分析:
由于都是排列,构造可以通过交换来实现,更具体的来说,我们希望找到$t$,使得$p_{i}$与$p_{t}$交换、$q_{j}$与$q_{t}$交换,使得满足$p_{i}\oplus q_{i}=p'_{i}\oplus q'_{i}\oplus x$(不关心$j$以及其他位置)
上述要求即$p_{t}=p_{i}\oplus x$,根据排列总是存在,然后执行这些交换,对之后的情况分类讨论:
1.$t=j$,那么即已经合法(根据$x\ne 0$,必然有$t\ne i$)
2.$t\ne j$,不难发现交换后不合法的位置仅有$t$和$j$,且我们希望将其异或值异或上$q_{t}\oplus q_{j}\oplus x$,不难发现这就是要求执行$solve(t,j,q_{t}\oplus q_{j}\oplus x)$
重复执行上述递归过程,注意到$j$是不变的,只需要证明$i$不会重复经过一个位置,那么递归次数就是$o(2^{k})$(找到$p_{t}$可以预处理做到$o(1)$),总复杂度即$o(2^{2k})$
下面,我们就要来证明$i$不能重复:
反证法,即假设存在重复,不妨假设是与第一次操作相同(可以将之前与其相同的操作看作第一次),即假设这些递归的$i$依次为$I_{1},I_{2},...,I_{m+1}$,其中$\forall 1\le i<j\le m,I_{i}\ne I_{j}$且$I_{m+1}=I_{1}$
假设递归$I_{1}$时是$solve(I_{1},j,x)$,归纳可得递归$I_{i}$时是$solve(I_{i},j,x\oplus q_{j}\oplus q_{I_{i}})$,接下来考虑递归$I_{m}$时整个序列在递归$I_{1}$前的变化——
$$
\begin{pmatrix}I_{1}&I_{2}&I_{3}&...&I_{m-1}&I_{m}&j\\p_{I_{2}}&p_{I_{3}}&p_{I_{4}}&...&p_{I_{m}}&p_{I_{1}}&p_{j}\\q_{I_{1}}&q_{j}&q_{I_{2}}&...&q_{I_{m-2}}&q_{I_{m-1}}&q_{I_{m}}\end{pmatrix}
$$
(其中第一行为下标,第2行和第3行描述当前的$p$和$q$,这里的$p_{i}$和$q_{i}$都是$I_{1}$操作之前$i$位置的值)
由于是$solve(I_{m},j,x\oplus q_{j}\oplus q_{I_{m}})$,同时由于$I_{m+1}=I_{1}$,即$p_{I_{2}}=p_{I_{1}}\oplus x\oplus q_{j}\oplus q_{I_{m}}$
同时,根据$I_{1}$第1次找到$I_{2}$,有$p_{I_{2}}=p_{I_{1}}\oplus x$,代入后不难得到$q_{j}=q_{I_{m}}$,由于是排列,即$I_{m}=j$,即矛盾

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 5005
4 int n,k,a[N],p[N],q[N],pos[N];
5 void solve(int i,int j,int x){
6 if (!x)return;
7 int t=pos[(p[i]^x)];
8 swap(p[i],p[t]);
9 swap(pos[p[i]],pos[p[t]]);
10 swap(q[j],q[t]);
11 if (t!=j)solve(t,j,(q[t]^q[j]^x));
12 }
13 int main(){
14 scanf("%d",&k);
15 n=(1<<k);
16 for(int i=0;i<n;i++){
17 scanf("%d",&a[i]);
18 if (i)a[i]^=a[i-1];
19 p[i]=q[i]=pos[i]=i;
20 }
21 if (a[n-1]){
22 printf("Fou");
23 return 0;
24 }
25 for(int i=0;i<n;i++)solve(i,i+1,a[i]);
26 printf("Shi\n");
27 for(int i=0;i<n;i++)printf("%d ",p[i]);
28 printf("\n");
29 for(int i=0;i<n;i++)printf("%d ",q[i]);
30 }
[cf1168E]Xor Permutations的更多相关文章
- Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2) D. Something with XOR Queries
地址:http://codeforces.com/contest/872/problem/D 题目: D. Something with XOR Queries time limit per test ...
- Permutations II
Given a collection of numbers that might contain duplicates, return all possible unique permutations ...
- [LeetCode] Maximum XOR of Two Numbers in an Array 数组中异或值最大的两个数字
Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231. Find the maximum re ...
- [LeetCode] Permutations II 全排列之二
Given a collection of numbers that might contain duplicates, return all possible unique permutations ...
- [LeetCode] Permutations 全排列
Given a collection of numbers, return all possible permutations. For example,[1,2,3] have the follow ...
- 二分+DP+Trie HDOJ 5715 XOR 游戏
题目链接 XOR 游戏 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- POJ2369 Permutations(置换的周期)
链接:http://poj.org/problem?id=2369 Permutations Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- BZOJ 2115 【Wc2011】 Xor
Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...
- Permutations
Permutations Given a collection of distinct numbers, return all possible permutations. For example,[ ...
随机推荐
- Wireshark简单协议的抓包分析
一.实验目的 HTTP.TCP.UDP.ICMP.ARP.IP.FTP.TELNET查询分析 基本掌握查询命令的使用方法 二.实验环境 硬件环境:一台Windows7系统,一台XP系统 软件环境:VM ...
- iframe、SameSite与CEF
iframe.SameSite与CEF 背景 本人使用CEF(或是Chrome)来加载开发的前端页面,其中使用iframe嵌入了第三方页面,在第三方页面中需要发送cookie到后端,然而加载会报错,第 ...
- Winform同步调用异步函数死锁原因分析、为什么要用异步
1.前言 几年前,一个开发同学遇到同步调用异步函数出现死锁问题,导致UI界面假死.我解释了一堆,关于状态机.线程池.WindowsFormsSynchronizationContext.Post.co ...
- 浅尝装饰器-@staticmethod 和@classmethod
[写在前面] 本帖归属于装饰器单元的学习,可以点击关键词'装饰器'查看其他博文讲解 [正文部分] 说到装饰器一开始我觉得很陌生,看了一下别人的博客讲解,原来以前学习遇到的静态方法@staticmeth ...
- 《JavaScript DOM编程艺术》:+= 相加之后再赋值
第2章 第20页 += var year = 2010; var message = "The year is"; message += year; message += yea ...
- 【UE4 C++ 基础知识】<6> 容器——TMap
概述 TMap主要由两个类型定义(一个键类型和一个值类型),以关联对的形式存储在映射中. 将数据存储为键值对(TPair<KeyType, ValueType>),只将键用于存储和获取 映 ...
- Scrum Meeting 13
第13次例会报告 日期:2021年06月05日 会议主要内容概述: 团队成员均明确了下一步的目标,进度突飞猛进辣 一.进度情况 我们采用日报的形式记录每个人的具体进度,链接Home · Wiki,如下 ...
- accept error: Too many open files
今天测试socket服务器同一时间处理多个客户端连接问题,第一次测试1000个的时候没问题,第二次测试1000个服务器accept的时候就报错了 accept error: Too many open ...
- Spring Cloud 微服务实战——nacos 服务注册中心搭建(附源码)
作为微服务的基础功能之一的注册中心担任重要的角色.微服务将单体的服务拆分成不同的模块下的服务,而不同的模块的服务如果进行通信调用呢?这就需要服务注册与发现.本文将使用阿里开源项目 nacos 搭建服务 ...
- 变量命名网站 Codelf
程序员最头疼的事情除了头发以外就是给变量或函数命名,一开始学编程语言的时候还可以 abc.a1.x2 等方式命名,等到工作过程中开始真正的项目开发时,如果还是这样随意的命名,即使同事可以忍受你的 ab ...