tarjan在图论中还是挺重要的.这里就简要的梳理一下tarjan的知识点.

tarjan算法与无向图连通性.

首先说一下图中割点和桥的定义.

桥:也称割边,定义类似,在无向图中,若去掉某条边,导致整张图不连通,则该边为割边.

割点:在无向图中,若去掉某个点,导致整张图不连通,则该点为割点.

其他的什么基础知识就不多说了,这里给出桥和割点的判定法则.

割边:dfn[x]<low[y].

感性的理解下,low[y]说明y向下走,没办法通过非树边到达x及以上的点.代码中的小细节就是tarjan时记录过来的边,防止重边对答案的影响.

割边:dfn[N],low[N],bridge[N],num;
inline void tarjan(int x,int in_edge)
{
dfn[x]=low[x]=++num;
for(int i=link[x];i;i=a[i].next)
{
int y=a[i].y;
if(!dfn[y])
{
tarjan(y,i);
low[x]=min(low[x],low[y]);
if(low[y]>dfn[x]) bridge[i]=bridge[i^1]=true;
}
else if(i!=(in_edge^1)) low[x]=min(low[x],dfn[y]);
}
}

割点:

1.若x不是搜索树的根结点,则满足dfn[x]<=low[y].(感性的理解,y只能到达x,无法与x以上的点取得联系)

2.若x是搜索树的1根结点,则满足至少存在两个以上节点才行.(根只有一个儿子显然不行.)

割点:num,dfn[N],low[N],vis[N];
inline void tarjan(int x)
{
dfn[x]=low[x]=++num;
int flag=0;
for(int i=link[x];i;i=a[i].next)
{
int y=a[i].y;
if(!dfn[y])
{
tarjan(y);
low[x]=min(low[x],low[y]);
if(low[y]>=dfn[x])
{
flag++;
if(x!=root||flag>=2) vis[x]=1;
}
}
else low[x]=min(low[x],dfn[y]);
}
}

之后是无向图的双连通分量.

点双联通图:若一个图中不存在割点,则称该图是点双联通图.

点双联通分量:无向图中的极大点双连通图.

边双联通图:若一个图中不存在桥,则称该图是边双联通图.

边双连通分量:无向图中的极大边双联通图.

先讨论边双的情况(因为简单).

判定:一个图是边双连通图的充要条件,图中任意一条边都至少存在一个简单环中.

很显然吧,若不在环中,则该边连接的两个点就断开了,则存在割边,不符合定义.

给出边双联通分量,即缩点的代码:

inline void tarjan(int x,int in_edge)
{
dfn[x]=low[x]=++num;
for(int i=link[x];i;i=a[i].next)
{
int y=a[i].y;
if(!dfn[y])
{
tarjan(y,i);
if(low[y]>dfn[x]) bridge[i]=bridge[i^1]=true;
}
else if(i!=(in_edge^1)) low[x]=min(low[x],dfn[y]);
}
}
inline void dfs(int x)
{
c[x]=dcc;
for(int i=link[x];i;i=a[i].next)
{
int y=a[i].y;
if(c[y]||bridge[i]) continue;
dfs(y);
}
}
main函数内:
for(int i=1;i<=n;++i) if(!c[i]) dcc++,dfs(i);
for(int i=2;i<=tot;++i)
{
int x=a[i^1].y,y=a[i].y;
if(c[x]!=c[y]) add_c(c[x],c[y]);
}

点双连通分量的判定(至少满足一个):

1.图的顶点数不超过2.

2.图中任意两个节点都同时包含在至少一个简单环中.

证明略过.....(还是太菜了..)

点双的代码:

inline void tarjan(int x)
{
dfn[x]=low[x]=++num;
stack[++top]=x;
if(x==root&&link[x]==0)
{
dcc[++cnt].push_back(x);
return;
}
int flag=0;
for(int i=link[x];i;i=a[i].next)
{
int y=a[i].y;
if(!dfn[y])
{
tarjan(y);
low[x]=min(low[x],low[y]);
if(low[y]>=dfn[x])
{
++flag;
if(x!=root||flag>=2) vis[x]=1;
cnt++;
int z=0;
while(z!=y)
{
z=stack[top--];
dcc[cnt].push_back(z);
}
dcc[cnt].push_back(x);
}
}
}
}
main函数内:
num=cnt;
for(int i=1;i<=n;++i) if(vis[i]) new_id[i]=++num;
tc=1;
for(int i=1;i<=cnt;++i)
{
for(int j=0;j<dcc[i].size();++j)
{
int x=dcc[i][j];
if(vis[x])
{
add_c(i,new_id[x]);
add_c(new_id[x],i);
}
else c[x]=i;
}
}

放一道边双缩点的题(码量很大啊...)

364. 网络

tarjan知识点梳理的更多相关文章

  1. Javascript重要知识点梳理

    Javascript重要知识点梳理 一.Javascript流程控制 js中常用的数据类型 var关键字的使用 if – else if – else switch while for 二.Javas ...

  2. Memcache知识点梳理

    Memcache知识点梳理 Memcached概念:    Memcached是一个免费开源的,高性能的,具有分布式对象的缓存系统,它可以用来保存一些经常存取的对象或数据,保存的数据像一张巨大的HAS ...

  3. [独孤九剑]Oracle知识点梳理(十)%type与%rowtype及常用函数

    本系列链接导航: [独孤九剑]Oracle知识点梳理(一)表空间.用户 [独孤九剑]Oracle知识点梳理(二)数据库的连接 [独孤九剑]Oracle知识点梳理(三)导入.导出 [独孤九剑]Oracl ...

  4. [独孤九剑]Oracle知识点梳理(九)数据库常用对象之package

    本系列链接导航: [独孤九剑]Oracle知识点梳理(一)表空间.用户 [独孤九剑]Oracle知识点梳理(二)数据库的连接 [独孤九剑]Oracle知识点梳理(三)导入.导出 [独孤九剑]Oracl ...

  5. [独孤九剑]Oracle知识点梳理(八)常见Exception

    本系列链接导航: [独孤九剑]Oracle知识点梳理(一)表空间.用户 [独孤九剑]Oracle知识点梳理(二)数据库的连接 [独孤九剑]Oracle知识点梳理(三)导入.导出 [独孤九剑]Oracl ...

  6. [独孤九剑]Oracle知识点梳理(七)数据库常用对象之Cursor

    本系列链接导航: [独孤九剑]Oracle知识点梳理(一)表空间.用户 [独孤九剑]Oracle知识点梳理(二)数据库的连接 [独孤九剑]Oracle知识点梳理(三)导入.导出 [独孤九剑]Oracl ...

  7. [独孤九剑]Oracle知识点梳理(六)数据库常用对象之Procedure、function、Sequence

    本系列链接导航: [独孤九剑]Oracle知识点梳理(一)表空间.用户 [独孤九剑]Oracle知识点梳理(二)数据库的连接 [独孤九剑]Oracle知识点梳理(三)导入.导出 [独孤九剑]Oracl ...

  8. [独孤九剑]Oracle知识点梳理(五)数据库常用对象之Table、View

    本系列链接导航: [独孤九剑]Oracle知识点梳理(一)表空间.用户 [独孤九剑]Oracle知识点梳理(二)数据库的连接 [独孤九剑]Oracle知识点梳理(三)导入.导出 [独孤九剑]Oracl ...

  9. [独孤九剑]Oracle知识点梳理(四)SQL语句之DML和DDL

    本系列链接导航: [独孤九剑]Oracle知识点梳理(一)表空间.用户 [独孤九剑]Oracle知识点梳理(二)数据库的连接 [独孤九剑]Oracle知识点梳理(三)导入.导出 [独孤九剑]Oracl ...

随机推荐

  1. Collections集合工具类和可变参数

    Collections常用的API: public static <T> boolean addAll(Collection<? super T> c, T... elemen ...

  2. 【C++周报】第二期 2021-8-19

    这次我们照样看一道题.个人认为比上一次的简单. https://vijos.org/p/1130 先说方法,动态规划,你能想到什么? "在它的左边加上一个自然数,但该自然数不能超过原数的一半 ...

  3. 概述 .NET 6 ThreadPool 实现

    目录 前言 任务的调度 基本调度单元 IThreadPoolWorkItem 实现类的实例. Task 全局队列 本地队列 偷窃机制 Worker Thread 的生命周期管理 线程生命注入实验 .N ...

  4. Linux系列(35) - 光盘yum源搭建(2)

    光盘搭建yum源 背景 当前Linux服务器没有网络,yum源下载好了,在光盘中 step-01 挂载光盘 mkdir /mnt/cdrom #建立挂载点 mount /dev/cdrom /mnt/ ...

  5. 目标检测之pycocotools安装

    从清华镜像源下载https://pypi.tuna.tsinghua.edu.cn/simple/pycocotools-windows/ wheel型包,pycocotools_windows-2. ...

  6. django 安装与配置-01

    安装命令 sudo pip install django python 可以引入django说明已经安装成功 查看django的版本 查看django管理命令 django-admin django创 ...

  7. iSCSI 服务器搭建

    一.简介 SCSI(Small Computer System Interface),小型计算机系统接口,是一种用于计算机及其周边设备之间(硬盘.软驱.光驱.打印机.扫描仪等)系统级接口的独立处理器标 ...

  8. P6222-「P6156 简单题」加强版【莫比乌斯反演】

    正题 题目链接:https://www.luogu.com.cn/problem/P6222 题目大意 给出\(k\),\(T\)组询问给出\(n\)求 \[\sum_{i=1}^n\sum_{j=1 ...

  9. 解决联想R720双系统Ubuntu16.04的无线网卡开启问题及信号不稳定

    问题一:1.问题描述笔记本型号:Lenovo r720笔记本(i5-7300hq,gtx1060 maxq 6g),默认装入Win10系统,然而当装入Ubuntu16.04双系统时,会出现无线网卡(型 ...

  10. 吴恩达--神经网络-week1-hw4

    # Ref: https://blog.csdn.net/u013733326/article/details/79767169 import numpy as np import testCases ...