【笔记】二分类算法解决多分类问题之OvO与OvR
OvO与OvR
前文书道,逻辑回归只能解决二分类问题,不过,可以对其进行改进,使其同样可以用于多分类问题,其改造方式可以对多种算法(几乎全部二分类算法)进行改造,其有两种,简写为OvO与OvR
OvR
one vs rest,即一对剩余所有,如字面意思,有的时候称为OvA,one vs all
假设有四个类别,对于这种分类问题,可以将一个类别选中以后,使其他三个类别合并为一个类别,即其它类别,这样就换变为二分类问题了,这种可以形成四种情况,选择预测概率高的,也就是说,有n个类别就进行n次分类,然后选择分类得分最高的,这样复杂度会上升很多,时间消耗会增加
OvO
one vs one,即一对一,就是进行一对一的比较
假设有四个类别,每个类别只用一个点表示,每次只挑出两个类别,然后进行二分类任务,四个任务可以形成六个情况,即排列组合的C的计算,然后看,对于这六个类别中,那个最好,即n个类别就进行C(n,2)次分类,选择赢数最高的分类结果,很显然,时间消耗的更多,但是分类结果更准
具体实现
(在notebook中)
使用鸢尾花的数据集,先只使用部分数据(两个维度),设置好以后,将数据集进行分割
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data[:,:2]
y = iris.target
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=666)
使用sklearn中的逻辑回归,使用ovr方式,因为ovo是默认情况,要使用ovr的话,需要设置multi_class为ovr,然后设置solver为liblinear
from sklearn.linear_model import LogisticRegression
#ovo是默认了
log_reg = LogisticRegression(multi_class='ovr',solver='liblinear')
log_reg.fit(X_train,y_train)
测试数据集的预测结果为

绘制函数:
from matplotlib.colors import ListedColormap
def plot_decision_boundary(model, axis):
x0,x1 = np.meshgrid(
np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),
np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1)
)
X_new = np.c_[x0.ravel(),x1.ravel()]
y_predict = model.predict(X_new)
zz = y_predict.reshape(x0.shape)
custom_cmap = ListedColormap(['#EF9A9A', '#FFF59D', '#90CAF9'])
plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
绘制决策边界
plot_decision_boundary(log_reg,axis=[4,8.5,1.5,4.5])
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.scatter(X[y==2,0],X[y==2,1])
图像为

使用ovo的方法,可以将multi_class设置为multinomial,再设置solver为newton-cg,也可以默认,不用设置也可以
log_reg2 = LogisticRegression(multi_class="multinomial",solver="newton-cg")
log_reg2.fit(X_train,y_train)
训练数据集的预测结果为

绘制决策边界
plot_decision_boundary(log_reg2,axis=[4,8.5,1.5,4.5])
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.scatter(X[y==2,0],X[y==2,1])
图像为

使用全部数据,重新进行数据集分割,首先是使用ovr的方法
X = iris.data
y = iris.target
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=666)
log_reg = LogisticRegression(multi_class='ovr',solver='liblinear')
log_reg.fit(X_train,y_train)
log_reg.score(X_test,y_test)
此时输出的结果为

然后是使用ovo的方法
log_reg2 = LogisticRegression(multi_class="multinomial",solver="newton-cg")
log_reg2.fit(X_train,y_train)
log_reg2.score(X_test,y_test)
输出结果为

使用sklearn中的ovr
使用和前面的一样
from sklearn.multiclass import OneVsRestClassifier
ovr = OneVsRestClassifier(log_reg)
ovr.fit(X_train,y_train)
ovr.score(X_test,y_test)
输出结果为

使用sklearn中的ovo
from sklearn.multiclass import OneVsOneClassifier
ovo = OneVsOneClassifier(log_reg)
ovo.fit(X_train,y_train)
ovo.score(X_test,y_test)
输出结果为

以上就是OvO与OvR

【笔记】二分类算法解决多分类问题之OvO与OvR的更多相关文章
- 分类算法之KNN分类
1.介绍 KNN是k nearest neighbor 的简称,即k最邻近,就是找k个最近的实例投票决定新实例的类标.KNN是一种基于实例的学习算法,它不同于贝叶斯.决策树等算法,KNN不需要训练,当 ...
- 高性能JavaScript笔记二(算法和流程控制、快速响应用户界面、Ajax)
循环 在javaScript中的四种循环中(for.for-in.while.do-while),只有for-in循环比其它几种明显要慢,另外三种速度区别不大 有一点需要注意的是,javascript ...
- Mahout 分类算法
实验简介 本次课程学习了Mahout 的 Bayes 分类算法. 一.实验环境说明 1. 环境登录 无需密码自动登录,系统用户名 shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu ...
- kNN算法:K最近邻(kNN,k-NearestNeighbor)分类算法
一.KNN算法概述 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它 ...
- 用Python开始机器学习(2:决策树分类算法)
http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树 ...
- Spark MLlib架构解析(含分类算法、回归算法、聚类算法和协同过滤)
Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基 ...
- Python机器学习笔记——随机森林算法
随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代 ...
- Python机器学习笔记 K-近邻算法
K近邻(KNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一. 所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.KNN算法的 ...
- Spark Mllib里如何对决策树二元分类和决策树多元分类的分类数目numClasses控制(图文详解)
不多说,直接上干货! 决策树二元分类的分类数目numClasses控制 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第13章 使用决策树二元分类算法来预测分类Stumble ...
随机推荐
- 架构之:serverless架构
目录 简介 什么是serverless serverless的例子 简单的三层服务 消息驱动 FaaS FaaS的缺点 FaaS的优点 总结 简介 不知道什么时候,出现了一个叫做Serverless架 ...
- Mysql/Oracle/达梦中数据字典表
在mysql中,数据字典表存放在information_schema库中,,对应的两张表,分别是TABLES,和COLUMNS. 在oracle中有表空间(即用户空间或者库)和模式的概念.模式和表空间 ...
- ESP32高分辨率计时器笔记
尽管FreeRTOS提供了软件计时器,但这些计时器有一些限制: 最大分辨率等于RTOS滴答周期 计时器回调从低优先级任务分派 硬件计时器不受这两个限制,但是通常它们使用起来不太方便.例如,应用组件可能 ...
- Java笔记——方法
1.方法 (1)概念:①解决事情的办法②实现功能的代码段. (2)优点:①提到代码的复用性②便于后期维护. (3)特点:①不调用不执行②方法不能嵌套,定义在类中方法外的位置. (4)定义方 ...
- 入门Kubernetes-Service
一.前言 前一篇文章通过 Deployment 实现了Pod中服务实现滚动更新/回滚等操作:在真实应用场景中,需要将一组Pod提供给外部访问.而且Pod生命周期是短暂的,在 Pod 的生命周期过程中, ...
- 技能篇:docker的简易教程
虚拟机技术每家公司发展到一定规模都必须考虑的,更好的环境隔离,更好的事故排查,更好的服务部署 docker的原理 docker更换阿里源 docker容器的相关命令 Dockerfile文件编写 do ...
- SpringMVC架构(一)
SpringMVC架构 1.1Spring web mvc介绍 Spring web mvc和Struts2都属于表现层的框架,它是Spring框架的一部分,我们可以从Spring的整体结构中看得出来 ...
- [刘阳Java]_步步窥探JS变量作用域
今天的这个文章题目名称甚是让人会突发异想.JS变量作用域是务必需要搞懂的,单从面试过程就会让面试者烧脑壳.所以,我们还是写一篇关于JS变量作用域的技术专题,让所有小伙伴能够借此文章去整理JS的基础学习 ...
- IDEA上搭建spark开发
IDEA上搭建spark开发环境 我本地系统是windows10,首先IDEA上要安装了scala插件. 1.下载winutils.exe文件 winutils.exe是在Windows系统上需要的h ...
- 常用js代码积累
1,js判断进入可视区,参考(亲测不行):https://www.cnblogs.com/Marydon20170307/p/8830069.html 重点学习的话,可参考: js计算元素距离顶部的高 ...