洛谷 P4931 - [MtOI2018]情侣?给我烧了!(加强版)(组合数学)
A 了这道题+发这篇题解,就当过了这个七夕节吧
奇怪的过节方式又增加了
首先看到此题第一眼我们可以想到二项式反演,不过这个 \(T\) 组数据加上 \(5\times 10^6\) 的数据范围肯定是反演不动的,因此考虑怎样不反演。
我们很显然可以将求解这个问题划分成两部分:选出 \(k\) 对相邻的情侣并将它们的位置安排好+排列好剩下 \(n-k\) 对情侣。两部分显然是独立的,因此分别考虑。第一部分是是比较容易的,选出 \(k\) 对情侣方案数 \(\dbinom{n}{k}\),选出 \(k\) 排位置方案数 \(\dbinom{n}{k}\),将这 \(k\) 对与 \(k\) 排座位对应方案数 \(k!\),将 \(k\) 对情侣随意调换位置 \(2^k\),因此第一部分方案数就是 \(\dbinom{n}{k}^2k!2^k\)。第二部分显然可以等效于求安排好 \(n-k\) 对情侣的方案数,假设这东西为 \(f_{n-k}\),显然这东西是要预处理的,考虑怎么预处理 \(f_n\)。注意到这东西跟错排数长得很像但又不完全一致,因此考虑错排数的套路,我们枚举第一排是哪两个人坐在一起的,那么方案数为 \(2n·(2n-2)\),第二个地方要减 \(2\) 因为一个人不能和自己的情侣坐在一起,那么考虑这两个人的 boy/girlfriend 是否坐在一起,如果它们坐在一起那不错,这两对 couple 就消失了,剩余部分就是 \(f_{n-2}\),不过安排好第一排这两个人的 boy/girlfriend 还需乘上个 \(2(n-1)\),因为要选择一排给他们坐,他们的位置还可以交换,因此需乘个 \(2\)。如果它们不坐一起,那么我们就把这东西当作一个限制条件,强制令它们贴贴,形成一对新的 couple,这样问题就规约为 \(f_{n-1}\),因此我们得到了递推式 \(f_n=2n·(2n-2)(f_{n-1}+2(n-1)f_{n-2})\),线性求一下即可。
时间复杂度 \(\mathcal O(n+T)\)
祝大家七夕节快乐
const int MAXN=5e6;
const int MOD=998244353;
int fac[MAXN+5],ifac[MAXN+5],pw2[MAXN+5],f[MAXN+5];
void init_fac(int n){
for(int i=(fac[0]=ifac[0]=ifac[1]=pw2[0]=1)+1;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) ifac[i]=1ll*ifac[i]*ifac[i-1]%MOD,fac[i]=1ll*fac[i-1]*i%MOD,pw2[i]=(pw2[i-1]<<1)%MOD;
f[0]=1;for(int i=2;i<=n;i++) f[i]=4ll*i*(i-1)%MOD*(f[i-1]+2ll*(i-1)*f[i-2]%MOD)%MOD;
}
int binom(int x,int y){
if(x<0||y<0||x<y) return 0;
return 1ll*fac[x]*ifac[y]%MOD*ifac[x-y]%MOD;
}
int main(){
init_fac(MAXN);int qu;scanf("%d",&qu);
while(qu--){
int n,k;scanf("%d%d",&n,&k);
printf("%d\n",1ll*binom(n,k)*binom(n,k)%MOD*pw2[k]%MOD*fac[k]%MOD*f[n-k]%MOD);
}
return 0;
}
洛谷 P4931 - [MtOI2018]情侣?给我烧了!(加强版)(组合数学)的更多相关文章
- 【洛谷P4931】 情侣?给我烧了!(加强版)组合计数
挺有意思的一道题... code: #include <bits/stdc++.h> using namespace std; #define N 5000006 #define mod ...
- 洛谷P3796 【模板】AC自动机(加强版)(AC自动机)
洛谷题目传送门 先膜一发yyb巨佬 orz 想学ac自动机的话,推荐一下yyb巨佬的博客,本蒟蒻也是从那里开始学的. 思路分析 裸的AC自动机,这里就不讲了.主要是这题太卡时了,尽管时限放的很大了.. ...
- 洛谷P2812校园网络【Network of Schools加强版】
题目背景 浙江省的几所\(OI\)强校的神犇发明了一种人工智能,可以\(AC\)任何题目,所以他们决定建立一个网络来共享这个软件.但是由于他们脑力劳动过多导致全身无力身体被\(♂\)掏\(♂\)空,他 ...
- 洛谷P4931 情侣!给我!烧了! 数论
正解:数论 解题报告: 传送门 这题,想不到就很痛苦,但是理解了之后还是觉得也没有很难,,,毕竟实现不难QAQ 首先关于前面k对情侣的很简单,就是C(n,k)*C(n,k)*A(k,k)*2k 随便解 ...
- 洛谷P4931 情侣?给我烧了!(加强版)(组合数学)
题面 传送门 题解 首先我们算出刚好有\(k\)对情侣的方案数 从\(n\)对情侣中选出\(k\)对,方案数为\({n\choose k}\) 从\(n\)排座位中选出\(k\)排,方案数为\({n\ ...
- 题解-洛谷4921&4931 情侣?给我烧了!(加不加强无所谓版)
Problem 简单版 & 加强版 题目概要(其实题面写得很清楚,这里搬运一下): \(n\) 对情侣排座位,恰有 \(n\) 排座位,每排 \(2\) 个座位,在一个就座方案中所有人会将将座 ...
- 洛谷P3796 - 【模板】AC自动机(加强版)
原题链接 Description 模板题啦~ Code //[模板]AC自动机(加强版) #include <cstdio> #include <cstring> int co ...
- cjoj P1435 - 【模板题 USACO】AC自动机 && 洛谷 P3796 【模板】AC自动机(加强版)
又打了一遍AC自动稽. 海星. 好像是第一次打trie图,很久以前就听闻这个思想了.OrzYYB~ // It is made by XZZ #include<cstdio> #inclu ...
- 【洛谷】NOIP提高组模拟赛Day1【组合数学】【贪心+背包】【网络流判断是否满流以及流量方案】
U41568 Agent1 题目背景 2018年11月17日,中国香港将会迎来一场XM大战,是世界各地的ENLIGHTENED与RESISTANCE开战的地点,某地 的ENLIGHTENED总部也想派 ...
随机推荐
- C语言中while 语句
while的执行顺序 while 循环的执行顺序非常简单,它的格式是: while (表达式) { 语句: } 概念:当表达式为真,则执行下面的语句:语句执行完之后再判断表达式是否为真,如果为真,再次 ...
- SPI在JDBC中的运用
前言 之前学习了JDK SPI的机制,本文专门讨论2个内容: 1.为什么在使用SPI后,不需要Class.forName()了? 2.SPI在JDBC中的运用. JDBC模板代码 private st ...
- 面试题 08.12. N皇后
题目 设计一种算法,打印 N 皇后在 N × N 棋盘上的各种摆法,其中每个皇后都不同行.不同列,也不在对角线上.这里的"对角线"指的是所有的对角线,不只是平分整个棋盘的那两条对角 ...
- windows下wchar_t的问题
使用vs新建工程或者编译工程的时候默认在编译设置里面讲wchar_t设置为内置类型,如下图: 但是在编译相互依赖的工程的时候,如果有的工程不将wchar_t设置为内置类型的时候,将会出现链接错误,需要 ...
- 单片机入门stm32知识学习的先后顺序
这里大概的罗列了一些学习STM32的内容,以及学习顺序.如果是新手的话,建议边看中文手册和学习视频;如果是已经入门的,个人建议自己做一个项目,不论项目大小,当然里面会涉及到自己已经学习过的,或者是自己 ...
- Redis的浅入门
Redis的浅入门 # 缓存的思想 问题提出:我们的用户数量上亿,如果登录,访问数据库user特别耗时,该怎么办?--提出缓存 方法:怎样从缓存在获取数据? *有数据: 直接返回 *无数据: (1)从 ...
- K8S_Kubernetes
Google创造, K8S,是基于容器的集群管理平台, K8S集群 应用场景 微服务 这个集群主要包括两个部分 一个Master节点(主节点) 一群Node节点(计算节点) Master节 ...
- Python 模块 itertools
python 2.6 引入了itertools模块,使得排列组合的实现非常简单: import itertools 有序排列:e.g., 4个数内选2个排列: >>> print l ...
- DeWeb --- Hello,World!
1.新建一个DLL,命名为hello.dpr 2.新增一个Form.(File->New->VCL Form - Delphi),建议不要更改单元名称和Form名称,即分别为unit1.p ...
- centos 下安装docker
官方文档比较累赘,简化就三步 1.安装依赖 yum -y install gcc gcc-c++ yum-utils device-mapper-persistent-data lvm2 2.添加re ...