洛谷 P5331 - [SNOI2019]通信(CDQ 分治优化建图+费用流)
首先熟悉网络流的同学应该能一眼看出此题的建模方法:
- 将每个点拆成两个点 \(in_i,out_i\),连一条 \(S\to in_i\),容量为 \(1\) 费用为 \(0\) 的边
- 连一条 \(in_i\to T\) 容量为 \(1\) 费用为 \(W\) 的边,表示哨站 \(i\) 连向控制中心
- 连一条 \(out_i\to T\) 容量为 \(1\) 费用为 \(0\) 的边,表示每个哨站最多被后面一个哨站连接
- 对每对 \(i,j(i>j)\) 连一条 \(in_i\to out_j\) 容量为 \(1\) 费用为 \(|a_i-a_j|\) 的边,表示哨站 \(i\) 连向哨站 \(j\)
然后跑最小费用最大流即可,最大流保证每个哨站都要么连向控制中心,要么连向了前面某个哨站,要么连向了控制中心,最小费用保证费用最小。
然后你兴高采烈地开始码,码好了,测过了样例,交上去……T 了?
不难发现在这个做法中边数最高可达到 \(n^2=10^6\),这显然是费用流所承受不了的。因此考虑优化建边。不过按照传统的线段树优化建图的方法是不太可行的,因为这里既涉及到下标的大小关系 \(i>j\),又涉及到值的大小关系(因为边权中带一个绝对值),也就是说这玩意儿实际上可以视作一个二维偏序,考虑求解 \(k\) 维偏序的时候用到的一个技巧——cdq 分治。每次递归到区间 \([l,r]\) 时候,记 \(mid=\lfloor\dfrac{l+r}{2}\rfloor\),我们就从 \([mid+1,r]\) 向 \([l,mid]\) 连边,我们将 \(a_l,a_{l+1},a_{l+2},\cdots,a_r\) 从小到大排序并去重,假设为 \(b_1,b_2,\cdots,b_m\),我们对每个 \(b_i\) 新建一个虚点 \(pt_i\),然后在 \(pt_i\) 与 \(pt_{i+1}\) 之间连费用为 \(b_{i+1}-b_i\) 的双向边,然后对 \(i\in[l,mid]\) 找出满足 \(b_j=a_i\) 的 \(j\) 然后连 \(pt_j\to out_i\),\(i\in[mid+1,r]\) 也同理,只不过是从 \(in_i\) 向 \(pt_j\) 连边。不难发现这种建图方法与暴力是等价的,边数也降到了 \(n\log n\) 级别,可以通过此题。
这是蒟蒻第一次遇到这种建图方法哦,不喜勿喷~
const int MAXN=1e3;
const int MAXV=2e4;
const int MAXE=1e5*2;
const int INF=0x3f3f3f3f;
int n,W,S=1,T=2,ncnt=2,a[MAXN+5],p1[MAXN+5],p2[MAXN+5];
int hd[MAXV+5],to[MAXE+5],nxt[MAXE+5],cap[MAXE+5],cst[MAXE+5],ec=1;
void adde(int u,int v,int f,int c){
to[++ec]=v;cap[ec]=f;cst[ec]=c;nxt[ec]=hd[u];hd[u]=ec;
to[++ec]=u;cap[ec]=0;cst[ec]=-c;nxt[ec]=hd[v];hd[v]=ec;
} int flw[MAXV+5],pre[MAXV+5],lste[MAXV+5];ll dis[MAXV+5];
bool inq[MAXV+5];
bool getdis(){
memset(dis,63,sizeof(dis));memset(flw,0,sizeof(flw));
dis[S]=0;flw[S]=INF;queue<int> q;q.push(S);inq[S]=1;
while(!q.empty()){
int x=q.front();q.pop();inq[x]=0;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e],z=cap[e],w=cst[e];
if(z&&dis[y]>dis[x]+w){
dis[y]=dis[x]+w;flw[y]=min(flw[x],z);
pre[y]=x;lste[y]=e;
if(!inq[y]){inq[y]=1;q.push(y);}
}
}
} return dis[T]<0x3f3f3f3f3f3f3f3fll;
}
pair<int,ll> mcmf(){
int mxfl=0;ll mncst=0;
while(getdis()){
mxfl+=flw[T];mncst+=flw[T]*dis[T];
for(int i=T;i^S;i=pre[i]){
cap[lste[i]]-=flw[T];cap[lste[i]^1]+=flw[T];
}
} return mp(mxfl,mncst);
}
int b[MAXN+5];
void build(int l,int r){
if(l==r) return;int mid=l+r>>1;
build(l,mid);build(mid+1,r);int cnt=0;
for(int i=l;i<=r;i++) b[++cnt]=a[i];
sort(b+1,b+cnt+1);cnt=unique(b+1,b+cnt+1)-b-1;
for(int i=1;i<cnt;i++){
adde(ncnt+i,ncnt+i+1,INF,b[i+1]-b[i]);
adde(ncnt+i+1,ncnt+i,INF,b[i+1]-b[i]);
}
for(int i=l;i<=r;i++){
int pos=lower_bound(b+1,b+cnt+1,a[i])-b;
if(i>mid) adde(p1[i],ncnt+pos,1,0);
else adde(ncnt+pos,p2[i],1,0);
} ncnt+=cnt;
}
int main(){
scanf("%d%d",&n,&W);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) p1[i]=++ncnt;
for(int i=1;i<=n;i++) p2[i]=++ncnt;
for(int i=1;i<=n;i++) adde(S,p1[i],1,0),adde(p2[i],T,1,0),adde(p1[i],T,1,W);
build(1,n);printf("%lld\n",mcmf().se);
return 0;
}
洛谷 P5331 - [SNOI2019]通信(CDQ 分治优化建图+费用流)的更多相关文章
- P5331 [SNOI2019]通信 [线段树优化建图+最小费用最大流]
这题真让人自闭-我EK费用流已经死了?- (去掉define int long long就过了) 我建的边害死我的 spfa 还是spfa已经死了? 按费用流的套路来 首先呢 把点 \(i\) 拆成两 ...
- 【BZOJ4276】[ONTAK2015]Bajtman i Okrągły Robin 线段树优化建图+费用流
[BZOJ4276][ONTAK2015]Bajtman i Okrągły Robin Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2 ...
- 洛谷P3810 陌上花开(CDQ分治)
洛谷P3810 陌上花开 传送门 题解: CDQ分治模板题. 一维排序,二维归并,三维树状数组. 核心思想是分治,即计算左边区间对右边区间的影响. 代码如下: #include <bits/st ...
- 洛谷P4169 天使玩偶 CDQ分治
还是照着CDQ的思路来. 但是有一些改动: 要求4个方向的,但是可爱的CDQ分治只能求在自己一个角落方向上的.怎么办?旋转!做4次就好了. 统计的不是和,而是——max!理由如下: 设当前点是(x,y ...
- [bzoj] 3263 陌上花开 洛谷 P3810 三维偏序|| CDQ分治 && CDQ分治讲解
原题 定义一个点比另一个点大为当且仅当这个点的三个值分别大于等于另一个点的三个值.每比一个点大就为加一等级,求每个等级的点的数量. 显然的三维偏序问题,CDQ的板子题. CDQ分治: CDQ分治是一种 ...
- HDU3605: Escape-二进制优化建图-最大流
目录 目录 思路: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 目录 题意:传送门 原题目描述在最下面. \(n(n\leq 100000)\)个人\(m(m\leq 10) ...
- 2018.09.27 codeforces1045A. Last chance(线段树优化建图+最大流)
传送门 看完题应该都知道是网络流了吧. 但是第二种武器直接建图会gg. 因此我们用线段树优化建图. 具体操作就是,对于这m个人先建一棵线段树,父亲向儿子连容量为inf的边,最后叶子结点向对应的人连容量 ...
- 洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP
洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他. 玩具上有一个数列,数列中某些项的值可能会 ...
- 洛谷P3783 [SDOI2017]天才黑客(前后缀优化建图+虚树+最短路)
题面 传送门 题解 去看\(shadowice\)巨巨写得前后缀优化建图吧 话说我似乎连线段树优化建图的做法都不会 //minamoto #include<bits/stdc++.h> # ...
随机推荐
- Codeforces Round #747 (Div. 2) Editorial
Codeforces Round #747 (Div. 2) A. Consecutive Sum Riddle 思路分析: 一开始想起了那个公式\(l + (l + 1) + - + (r − 1) ...
- 微信小程序的支付流程
一.前言 微信小程序为电商类小程序,提供了非常完善.优秀.安全的支付功能 在小程序内可调用微信的API完成支付功能,方便.快捷 场景如下图所示: 用户通过分享或扫描二维码进入商户小程序,用户选择购买, ...
- Spring session redis ERR unknown command 'CONFIG'
部署线上服务启动报错 redis.clients.jedis.exceptions.JedisDataException: ERR unknown command 'CONFIG' Redis CON ...
- Scrum Meeting 14
第14次例会报告 日期:2021年06月07日 会议主要内容概述: 汇报了已完成的工作,明确了下一步目标,正在努力赶进度. 一.进度情况 我们采用日报的形式记录每个人的具体进度,链接Home · Wi ...
- 第五次Alpha Scrum Meeting
本次会议为Alpha阶段第五次Scrum Meeting会议 会议概要 会议时间:2021年4月30日 会议地点:线上会议 会议时长:15min 会议内容简介:本次会议以主要围绕卡牌对接的诸多问题与对 ...
- [技术博客] 敏捷软工——JavaScript踩坑记
[技术博客] 敏捷软工--JavaScript踩坑记 一.一个令人影响深刻的坑 1.脚本语言的面向对象 面向对象特性是现代编程语言的基本特性,JavaScript中当然集成了面向对象特性.但是Java ...
- centOs7.6安装 mysql-8.0.27
1.下载mysql 2.连接服务器 3.通过 rpm -qa | grep mariadb 命令查看 mariadb 的安装包 4.通过 rpm -e mariadb-libs-5.5.68-1.el ...
- Noip模拟47 2021.8.25
期望得分:55+24+53 实际得分:0+0+3 乐死 累加变量清零了吗? 打出更高的部分分暴力删了吗? 样例解释换行你看见了吗? T1 Prime 打出55分做法没删原来的暴力,结果就轻松挂55分 ...
- 单片机stm32串口分析
stm32作为现在嵌入式物联网单片机行业中经常要用多的技术,相信大家都有所接触,今天这篇就给大家详细的分析下有关于stm32的出口,还不是很清楚的朋友要注意看看了哦,在最后还会为大家分享有些关于stm ...
- 期望 概率DP
期望 \(x\) 的期望 \(E(x)\) 表示平均情况下 \(x\) 的值. 令 \(C\) 表示常数, \(X\) 和 \(Y\) 表示两个随机变量. \(E(C)=C\) \(E(C \time ...