题面传送门

首先熟悉网络流的同学应该能一眼看出此题的建模方法:

  • 将每个点拆成两个点 \(in_i,out_i\),连一条 \(S\to in_i\),容量为 \(1\) 费用为 \(0\) 的边
  • 连一条 \(in_i\to T\) 容量为 \(1\) 费用为 \(W\) 的边,表示哨站 \(i\) 连向控制中心
  • 连一条 \(out_i\to T\) 容量为 \(1\) 费用为 \(0\) 的边,表示每个哨站最多被后面一个哨站连接
  • 对每对 \(i,j(i>j)\) 连一条 \(in_i\to out_j\) 容量为 \(1\) 费用为 \(|a_i-a_j|\) 的边,表示哨站 \(i\) 连向哨站 \(j\)

然后跑最小费用最大流即可,最大流保证每个哨站都要么连向控制中心,要么连向了前面某个哨站,要么连向了控制中心,最小费用保证费用最小。

然后你兴高采烈地开始码,码好了,测过了样例,交上去……T 了?

不难发现在这个做法中边数最高可达到 \(n^2=10^6\),这显然是费用流所承受不了的。因此考虑优化建边。不过按照传统的线段树优化建图的方法是不太可行的,因为这里既涉及到下标的大小关系 \(i>j\),又涉及到值的大小关系(因为边权中带一个绝对值),也就是说这玩意儿实际上可以视作一个二维偏序,考虑求解 \(k\) 维偏序的时候用到的一个技巧——cdq 分治。每次递归到区间 \([l,r]\) 时候,记 \(mid=\lfloor\dfrac{l+r}{2}\rfloor\),我们就从 \([mid+1,r]\) 向 \([l,mid]\) 连边,我们将 \(a_l,a_{l+1},a_{l+2},\cdots,a_r\) 从小到大排序并去重,假设为 \(b_1,b_2,\cdots,b_m\),我们对每个 \(b_i\) 新建一个虚点 \(pt_i\),然后在 \(pt_i\) 与 \(pt_{i+1}\) 之间连费用为 \(b_{i+1}-b_i\) 的双向边,然后对 \(i\in[l,mid]\) 找出满足 \(b_j=a_i\) 的 \(j\) 然后连 \(pt_j\to out_i\),\(i\in[mid+1,r]\) 也同理,只不过是从 \(in_i\) 向 \(pt_j\) 连边。不难发现这种建图方法与暴力是等价的,边数也降到了 \(n\log n\) 级别,可以通过此题。

这是蒟蒻第一次遇到这种建图方法哦,不喜勿喷~

const int MAXN=1e3;
const int MAXV=2e4;
const int MAXE=1e5*2;
const int INF=0x3f3f3f3f;
int n,W,S=1,T=2,ncnt=2,a[MAXN+5],p1[MAXN+5],p2[MAXN+5];
int hd[MAXV+5],to[MAXE+5],nxt[MAXE+5],cap[MAXE+5],cst[MAXE+5],ec=1;
void adde(int u,int v,int f,int c){
to[++ec]=v;cap[ec]=f;cst[ec]=c;nxt[ec]=hd[u];hd[u]=ec;
to[++ec]=u;cap[ec]=0;cst[ec]=-c;nxt[ec]=hd[v];hd[v]=ec;
} int flw[MAXV+5],pre[MAXV+5],lste[MAXV+5];ll dis[MAXV+5];
bool inq[MAXV+5];
bool getdis(){
memset(dis,63,sizeof(dis));memset(flw,0,sizeof(flw));
dis[S]=0;flw[S]=INF;queue<int> q;q.push(S);inq[S]=1;
while(!q.empty()){
int x=q.front();q.pop();inq[x]=0;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e],z=cap[e],w=cst[e];
if(z&&dis[y]>dis[x]+w){
dis[y]=dis[x]+w;flw[y]=min(flw[x],z);
pre[y]=x;lste[y]=e;
if(!inq[y]){inq[y]=1;q.push(y);}
}
}
} return dis[T]<0x3f3f3f3f3f3f3f3fll;
}
pair<int,ll> mcmf(){
int mxfl=0;ll mncst=0;
while(getdis()){
mxfl+=flw[T];mncst+=flw[T]*dis[T];
for(int i=T;i^S;i=pre[i]){
cap[lste[i]]-=flw[T];cap[lste[i]^1]+=flw[T];
}
} return mp(mxfl,mncst);
}
int b[MAXN+5];
void build(int l,int r){
if(l==r) return;int mid=l+r>>1;
build(l,mid);build(mid+1,r);int cnt=0;
for(int i=l;i<=r;i++) b[++cnt]=a[i];
sort(b+1,b+cnt+1);cnt=unique(b+1,b+cnt+1)-b-1;
for(int i=1;i<cnt;i++){
adde(ncnt+i,ncnt+i+1,INF,b[i+1]-b[i]);
adde(ncnt+i+1,ncnt+i,INF,b[i+1]-b[i]);
}
for(int i=l;i<=r;i++){
int pos=lower_bound(b+1,b+cnt+1,a[i])-b;
if(i>mid) adde(p1[i],ncnt+pos,1,0);
else adde(ncnt+pos,p2[i],1,0);
} ncnt+=cnt;
}
int main(){
scanf("%d%d",&n,&W);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) p1[i]=++ncnt;
for(int i=1;i<=n;i++) p2[i]=++ncnt;
for(int i=1;i<=n;i++) adde(S,p1[i],1,0),adde(p2[i],T,1,0),adde(p1[i],T,1,W);
build(1,n);printf("%lld\n",mcmf().se);
return 0;
}

洛谷 P5331 - [SNOI2019]通信(CDQ 分治优化建图+费用流)的更多相关文章

  1. P5331 [SNOI2019]通信 [线段树优化建图+最小费用最大流]

    这题真让人自闭-我EK费用流已经死了?- (去掉define int long long就过了) 我建的边害死我的 spfa 还是spfa已经死了? 按费用流的套路来 首先呢 把点 \(i\) 拆成两 ...

  2. 【BZOJ4276】[ONTAK2015]Bajtman i Okrągły Robin 线段树优化建图+费用流

    [BZOJ4276][ONTAK2015]Bajtman i Okrągły Robin Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2 ...

  3. 洛谷P3810 陌上花开(CDQ分治)

    洛谷P3810 陌上花开 传送门 题解: CDQ分治模板题. 一维排序,二维归并,三维树状数组. 核心思想是分治,即计算左边区间对右边区间的影响. 代码如下: #include <bits/st ...

  4. 洛谷P4169 天使玩偶 CDQ分治

    还是照着CDQ的思路来. 但是有一些改动: 要求4个方向的,但是可爱的CDQ分治只能求在自己一个角落方向上的.怎么办?旋转!做4次就好了. 统计的不是和,而是——max!理由如下: 设当前点是(x,y ...

  5. [bzoj] 3263 陌上花开 洛谷 P3810 三维偏序|| CDQ分治 && CDQ分治讲解

    原题 定义一个点比另一个点大为当且仅当这个点的三个值分别大于等于另一个点的三个值.每比一个点大就为加一等级,求每个等级的点的数量. 显然的三维偏序问题,CDQ的板子题. CDQ分治: CDQ分治是一种 ...

  6. HDU3605: Escape-二进制优化建图-最大流

    目录 目录 思路: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 目录 题意:传送门  原题目描述在最下面.  \(n(n\leq 100000)\)个人\(m(m\leq 10) ...

  7. 2018.09.27 codeforces1045A. Last chance(线段树优化建图+最大流)

    传送门 看完题应该都知道是网络流了吧. 但是第二种武器直接建图会gg. 因此我们用线段树优化建图. 具体操作就是,对于这m个人先建一棵线段树,父亲向儿子连容量为inf的边,最后叶子结点向对应的人连容量 ...

  8. 洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP

    洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他. 玩具上有一个数列,数列中某些项的值可能会 ...

  9. 洛谷P3783 [SDOI2017]天才黑客(前后缀优化建图+虚树+最短路)

    题面 传送门 题解 去看\(shadowice\)巨巨写得前后缀优化建图吧 话说我似乎连线段树优化建图的做法都不会 //minamoto #include<bits/stdc++.h> # ...

随机推荐

  1. sql递归查询部门数据

    1 with cte as 2 ( 3 select a.DepartCode,a.DepartName,a.ParentDepartCode from tbDeparts a where Paren ...

  2. 字符串匹配(kmp+trie+aho-corasic automaton+fail tree)

    目录 kmp 那么怎么快速求最长前缀后缀呢 trie aho-corasic automaton fail tree kmp 对于一个字符串\(s_{0\dots n}\),称\(s_{0\dots ...

  3. Relocations in generic ELF (EM: 40)

    最近在搞机器上的wifi热点,需要移植一大堆东西,如hostapd\wpa_suppliant.dhcp等,这些玩意又依赖其他的一大堆库的移植,比如libnl,openssl等,今天在移植编译libn ...

  4. QT判断文件/目录是否存在

    最近在用qt写一个ui,遇到删除sd卡中的文件失败情况,有些时候是存在删除链表里面的文件在sd卡上已经不存在了,导致失败,以为我的链表是定时刷新的,但是文件是实时更新会同步覆盖的.这样就存在可能上一秒 ...

  5. best-time-to-buy-and-sell-stock-iii leetcode C++

    Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...

  6. Redis6.2发布 地理位置功能增强了什么?

    原文地址:https://developer.aliyun.com/article/780257 Redis社区最近刚刚发布Redis6.2 RC1版本,在本次发布中,阿里云Tair团队(阿里云云内存 ...

  7. 编译原理中Follow集的求法

    经过前阵子的各种百度以及对课本的反复研究,终于弄明白了follow集的求法,下面记录一下! 首先引用龙书里面的一段较为公式化的follow集求法的话: 计算所有非终结符号A的follow(A)集合时, ...

  8. ASP.NET Core设置URLs的几种方法

    前言 在使用ASP.NET Core 3.1开发时,需要配置服务器监听的端口和协议,官方帮助文档进行简单说明,文档中提到了4种指定URL的方法 设置ASPNETCORE_URLS 环境变量: 使用do ...

  9. JMeter学习笔记--函数学习(_csvRead 函数)

    JMeter函数可以很方便实现一些小功能,几乎可以用于测试计划中的任何元件.一个函数的调用如下:${_functionName(var1,var2,var3)},_functionName匹配函数名, ...

  10. linux下端口占用

    1, netstat -tunlp|grep 1235 2,kill -9 18520