【题目描述】

求有多少个1到n的排列满足恰有$k$对在排列中相邻的数满足前小于后,答案对2012取模。

【输入】

一行2个正整数$n,k$。

【输出】

输出一个整数表示答案。

【样例输入】

  5  2

【样例输出】

  66

【数据范围】

  $k<n<=1000$

分析:

计数类问题,应该是个式子或者DP

考虑$k$和$n$都不大考虑DP。$f[i][j]$表示$n=i$,$k=j$时的答案。

那么考虑怎么转移,考虑将$i$插入长度为$i-1$的排列中,对答案的影响。有$f[i][j]=f[i-1][j]*(j+1)+f[i-1][j-1]*(i-j)$

$f[i-1][j]*(j+1)$表示将$i$插入后满足要求的数对没有变多,因为$i$大于$i-1$排列中的任意一个,所以将$i$插入$j$个以满足的数对中的任意一个都不会使得满足条件的数对变多,又或者直接将$i$放在第一个。

$f[i-1][j-1]*(i-j)$表示将$i$插入后数对变多了,也是因为$i$大于$i-1$排列中的任意一个,所以只要不插入到$j-1$个已经满足的数对中即可,那么就会有$(i-2)-(j-1))$,加上最后一个位置就是$i-j$了。

初值为$f[i][0]=1$,可以用打表和DP式子来判断。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 1005
#define p 2012
using namespace std;
int n,k,f[N][N];
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) f[i][0]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<i;j++)
f[i][j]=(f[i-1][j]*(j+1)%p+(f[i-1][j-1]*(i-j))%p)%p;
printf("%d\n",f[n][k]);
return 0;
}

总结:

计数类问题,一般都是排列组合DP。尤其是在数据范围不太大,DP状态可以表示时,要考虑DP。

其实也不能算是DP,更准确的说应该是递推,考虑从$i$到$i+1$的答案变化。

DTOJ 4030: 排列计数的更多相关文章

  1. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  2. bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

    题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 846  Solved: 530[Submit][ ...

  3. ACM/ICPC 之 DP-浅谈“排列计数” (POJ1037)

    这一题是最近在看Coursera的<算法与设计>的公开课时看到的一道较难的DP例题,之所以写下来,一方面是因为DP的状态我想了很久才想明白,所以借此记录,另一方面是看到这一题有运用到 排列 ...

  4. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  5. 【数论·错位排列】bzoj4517 排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1428  Solved: 872[Submit][Statu ...

  6. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  7. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  8. bzoj4517排列计数 错排+组合

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1491  Solved: 903[Submit][Statu ...

  9. BZOJ_4517_[Sdoi2016]排列计数_组合数学

    BZOJ_4517_[Sdoi2016]排列计数_组合数学 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[ ...

随机推荐

  1. MySQL 8.0安装 + 配置环境变量 + 连接 cmd

    MySQL 安装教程 搜索 MySQL,进入官网,找到 download 点击适用于 window community 版本,点击图中第二个 450.7 M 的安装包进行下载 这里有五个选项,选择第二 ...

  2. hystrix的dashboard和turbine监控

    当我们的应用程序使用了hystrix后,每个具体的hystrixCommand命令执行后都会产生一堆的监控数据,比如:成功数,失败数,超时数以及与之关联的线程池信息等.既然有了这些监控数据数据,那么我 ...

  3. USB_ID OTG

    谁知道USB_ID pin 脚的功能意义?是干什么用的?USB 中不就有 VDD,GND,USB+,USB- 并没有USB_ID 的信息呀?检测ID脚状态高低,从而判断为主设备或从设备,otg的时候用 ...

  4. 用STM32内置的高速ADC实现简易示波器

    做一个数字采样示波器一直是我长久以来的愿望,不过毕竟这个目标难度比较大,涉及的方面实在太多,模拟前端电路.高速ADC.单片机.CPLD/FPGA.通讯.上位机程序.数据处理等等,不是一下子就能成的,慢 ...

  5. VMware Workstation 16.2 Pro for Linux SLIC 2.6 & Unlocker

    请访问原文链接:https://sysin.org/blog/vmware-workstation-16-linux-slic/,查看最新版.原创作品,转载请保留出处. 作者:gc(at)sysin. ...

  6. 全志TinaLinux编译错误fatal error: unicode/ucnv.h: No such file or directory

    今天开始正式干活了 拿到一个全志Tina的板子还有一个SDK压缩包,要求我这周(只剩一天半...)就要把sdk编译通过并且把板子跑起来. 还特别跟我说他们试了下这个sdk编译没法通过,会报错... 竟 ...

  7. Atcoder 题目泛做

    我思维越来越菜了,这样下去感觉要退役了. 听说Atcoder的题练思维?那就试着做一做吧. 坚持每天一两道吧.(很有可能咕掉.) AGC036 官方题解 ---A-Triangle          ...

  8. 热门剧本杀与 SaaS 的不解之缘

    近年来,"剧本杀"这种以剧本为核心,玩家分别扮演不同角色推理案情找出真凶的娱乐项目在年轻人的范围内迅速传开,已悄然形成了一个市场规模超百亿的新兴产业,吸引了大量淘金者.而在互联网时 ...

  9. 基于霸道秉火的STM32F103ZET6嵌入式开发之------定时器中断3

    1 #include "time.h" 2 #include "led.h" 3 #include "beep.h" 4 //¶¨Ê±Æ÷Ö ...

  10. git clone报错处理

    git clone过大的仓库时会报以下错误 remote: aborting due to possible repository corruption on the remote side. fat ...