参考网址: https://blog.csdn.net/weixin_43989331/article/details/105356008

C#中的几种锁:用户模式锁、内核模式锁、动态计数、监视锁
介绍几种C#中的锁,最常用的是最后的监视锁,其他的也有必要了解一下原理及应用,特别像WaitOne、WaitHandle在我们项目中应用还是挺多的。

文章目录
C#中的几种锁:用户模式锁、内核模式锁、动态计数、监视锁
用户模式锁
内核模式锁
动态计数锁
监视锁

锁:解决多线程中的数据共享安全问题。
用户模式锁
volatile关键字:取消release对底层的优化,在读写的时候都从内存中读取

SpinLock 旋转锁:

SpinLock spinLock = new SpinLock();
bool lockTaken = false;
spinLock.Enter(ref lockTaken);
spinLock.Exit();

内核模式锁
分为:事件锁、信号量、互斥锁、读写锁。

建议:通常不建议随便使用内核模式锁,资源付出相对较大。我们可以使用混合锁代替,以及我们马上讲到的lock关键字。

事件锁(自动事件锁、手动事件锁):

自动事件锁:AutoResetEvent

AutoResetEvent myLock = new AutoResetEvent(true);//true:表示终止状态(初始状态),false表示非终止
myLock.WaitOne();
//...
myLock.Set();

手动事件锁:ManualResetEvent,和自动事件锁相比,差距在于可以对多个变量进行批量锁

ManualResetEvent myLock = new ManualResetEvent(false);//true:可以正常通过的。false:拦截状态,禁止通过。

myLock.WaitOne();//批量拦截
//...//由于是一批,这里是无序的
myLock.Set();

Semaphore 信号量

基本原理:是通过int数值来控制线程的个数

Semaphore myLock = new Semaphore(5, 10);//第一个参数表示同时可以允许的线程数,第二个是最大值

Semaphore myLock = new Semaphore(1, 10);//每次只能一个线程通过

Semaphore myLock = new Semaphore(1, 10);

myLock.WaitOne();
//...
myLock.Release();

  • Mutex互斥锁

    可用于非全局变量互斥的情况,如同一ID的用户只允许提交一次抽奖请求。

Mutex mutex = new Mutex();

mutex.WaitOne();
//...
mutex.ReleaseMutex();
 

以上三种锁都有WaitOne()方法,因为他们都继承自waitHandle。

读写锁ReaderWriterLock

注意:读写锁并不是从限定线程个数的角度出发。而是按照读写的功能划分。

读写锁的基本方案:多个线程可以一起读,只能让一个线程去写。

模拟场景:多个线程读取,一个线程写。请思考:写的线程是否能够正常阻止读的线程?如果能阻止,则达到目标。

static ReaderWriterLock readerWriterLock = new ReaderWriterLock();

/// <summary>
/// 读取数据的线程
/// </summary>
private static void ThreadRead()
{
while (true)
{
readerWriterLock.AcquireReaderLock(int.MaxValue);//参数:表示最大的超时时间

Thread.Sleep(100);
Console.WriteLine($"当前读取的tid={Thread.CurrentThread.ManagedThreadId} {DateTime.Now.ToLongTimeString()}");
readerWriterLock.ReleaseReaderLock();
}
}
/// <summary>
/// 写入数据的线程
/// </summary>
private static void ThreadWrite()
{
while (true)
{
readerWriterLock.AcquireWriterLock(int.MaxValue);//参数:表示最大的超时时间

Thread.Sleep(3000);
Console.WriteLine($"---------------------------------------------当前写入的tid={Thread.CurrentThread.ManagedThreadId} {DateTime.Now.ToLongTimeString()}");

readerWriterLock.ReleaseWriterLock();
}
}
//通过观察,我们发现写入的时候,能够正常的拦截读取的线程。
//PS:如果我们写入数据的任务耗时太长,比如十几秒或更长,此时读的线程会被卡死,从而超时。开发中要特别注意。

动态计数锁
CountdownEvent:限制线程数的一个机制,而且这个也是比较常用的(同属于信号量的一种).

使用场景:基于多个线程从某一个表中读取数据:比如我们现有A、B、C…每一张数据表我们都希望通过多个线程去读取。因为用一个线程的话,那么数据量大会出现卡死的情况。

举例:

A表:10w数据–》10个线程读取,1个线程1w条数据。
B表:5w数据 --》5个线程 1个线程1w
C表:1w数据 --》2个线程 1个线程5k

private static CountdownEvent countdownEvent = new CountdownEvent(10);
//默认10个threadcount初始值,一个线程用一个就减掉1,直到为0后,相当于结束
static void LoadData()
{
countdownEvent.Reset(10);//重置当前ThreadCount上限
for (int i = 0; i < 10; i++)
{
Task.Factory.StartNew(() =>
{
Thread.Sleep(500);
LoadTableA();
});
}

//阻止当前线程,直到设置了System.Threading.CountdonwEvent为止
countdownEvent.Wait();//相当于Task.WaitAll()

Console.WriteLine("TableA加载完毕..........\r\n");

//加载B表
countdownEvent.Reset(5);
for (int i = 0; i < 5; i++)
{
Task.Factory.StartNew(() =>
{
Thread.Sleep(500);
LoadTableB();
});
}
countdownEvent.Wait();
Console.WriteLine("TableB加载完毕..........\r\n");

//加载C表
myLock7.Reset(2);
for (int i = 0; i < 2; i++)
{
Task.Factory.StartNew(() =>
{
Thread.Sleep(500);
LoadTableC();
});
}
countdownEvent.Wait();
Console.WriteLine("TableC加载完毕..........\r\n");
}

/// <summary>
/// 加载A表
/// </summary>
private static void LoadTableA()
{
//在这里编写具体的业务逻辑...
Console.WriteLine($"当前TableA正在加载中...{Thread.CurrentThread.ManagedThreadId}");
countdownEvent.Signal();//将当前的ThreadCount-- 操作,就是减掉一个值
}

/// <summary>
/// 加载B表
/// </summary>
private static void LoadTableB()
{
//在这里编写具体的业务逻辑...
Console.WriteLine($"当前TableB正在加载中...{ Thread.CurrentThread.ManagedThreadId}");
countdownEvent.Signal();
}

/// <summary>
/// 加载C表
/// </summary>
private static void LoadTableC()
{
//在这里编写具体的业务逻辑...
Console.WriteLine($"当前TableC正在加载中...{Thread.CurrentThread.ManagedThreadId}");
countdownEvent.Signal();
}

动态计数锁
CountdownEvent:限制线程数的一个机制,而且这个也是比较常用的(同属于信号量的一种).

使用场景:基于多个线程从某一个表中读取数据:比如我们现有A、B、C…每一张数据表我们都希望通过多个线程去读取。因为用一个线程的话,那么数据量大会出现卡死的情况。

举例:

A表:10w数据–》10个线程读取,1个线程1w条数据。
B表:5w数据 --》5个线程 1个线程1w
C表:1w数据 --》2个线程 1个线程5k

private static CountdownEvent countdownEvent = new CountdownEvent(10);
//默认10个threadcount初始值,一个线程用一个就减掉1,直到为0后,相当于结束
static void LoadData()
{
countdownEvent.Reset(10);//重置当前ThreadCount上限
for (int i = 0; i < 10; i++)
{
Task.Factory.StartNew(() =>
{
Thread.Sleep(500);
LoadTableA();
});
}

//阻止当前线程,直到设置了System.Threading.CountdonwEvent为止
countdownEvent.Wait();//相当于Task.WaitAll()

Console.WriteLine("TableA加载完毕..........\r\n");

//加载B表
countdownEvent.Reset(5);
for (int i = 0; i < 5; i++)
{
Task.Factory.StartNew(() =>
{
Thread.Sleep(500);
LoadTableB();
});
}
countdownEvent.Wait();
Console.WriteLine("TableB加载完毕..........\r\n");

//加载C表
myLock7.Reset(2);
for (int i = 0; i < 2; i++)
{
Task.Factory.StartNew(() =>
{
Thread.Sleep(500);
LoadTableC();
});
}
countdownEvent.Wait();
Console.WriteLine("TableC加载完毕..........\r\n");
}

/// <summary>
/// 加载A表
/// </summary>
private static void LoadTableA()
{
//在这里编写具体的业务逻辑...
Console.WriteLine($"当前TableA正在加载中...{Thread.CurrentThread.ManagedThreadId}");
countdownEvent.Signal();//将当前的ThreadCount-- 操作,就是减掉一个值
}

/// <summary>
/// 加载B表
/// </summary>
private static void LoadTableB()
{
//在这里编写具体的业务逻辑...
Console.WriteLine($"当前TableB正在加载中...{ Thread.CurrentThread.ManagedThreadId}");
countdownEvent.Signal();
}

/// <summary>
/// 加载C表
/// </summary>
private static void LoadTableC()
{
//在这里编写具体的业务逻辑...
Console.WriteLine($"当前TableC正在加载中...{Thread.CurrentThread.ManagedThreadId}");
countdownEvent.Signal();
}

动态计数锁
CountdownEvent:限制线程数的一个机制,而且这个也是比较常用的(同属于信号量的一种).

使用场景:基于多个线程从某一个表中读取数据:比如我们现有A、B、C…每一张数据表我们都希望通过多个线程去读取。因为用一个线程的话,那么数据量大会出现卡死的情况。

举例:

A表:10w数据–》10个线程读取,1个线程1w条数据。
B表:5w数据 --》5个线程 1个线程1w
C表:1w数据 --》2个线程 1个线程5k

private static CountdownEvent countdownEvent = new CountdownEvent(10);
//默认10个threadcount初始值,一个线程用一个就减掉1,直到为0后,相当于结束
static void LoadData()
{
countdownEvent.Reset(10);//重置当前ThreadCount上限
for (int i = 0; i < 10; i++)
{
Task.Factory.StartNew(() =>
{
Thread.Sleep(500);
LoadTableA();
});
}

//阻止当前线程,直到设置了System.Threading.CountdonwEvent为止
countdownEvent.Wait();//相当于Task.WaitAll()

Console.WriteLine("TableA加载完毕..........\r\n");

//加载B表
countdownEvent.Reset(5);
for (int i = 0; i < 5; i++)
{
Task.Factory.StartNew(() =>
{
Thread.Sleep(500);
LoadTableB();
});
}
countdownEvent.Wait();
Console.WriteLine("TableB加载完毕..........\r\n");

//加载C表
myLock7.Reset(2);
for (int i = 0; i < 2; i++)
{
Task.Factory.StartNew(() =>
{
Thread.Sleep(500);
LoadTableC();
});
}
countdownEvent.Wait();
Console.WriteLine("TableC加载完毕..........\r\n");
}

/// <summary>
/// 加载A表
/// </summary>
private static void LoadTableA()
{
//在这里编写具体的业务逻辑...
Console.WriteLine($"当前TableA正在加载中...{Thread.CurrentThread.ManagedThreadId}");
countdownEvent.Signal();//将当前的ThreadCount-- 操作,就是减掉一个值
}

/// <summary>
/// 加载B表
/// </summary>
private static void LoadTableB()
{
//在这里编写具体的业务逻辑...
Console.WriteLine($"当前TableB正在加载中...{ Thread.CurrentThread.ManagedThreadId}");
countdownEvent.Signal();
}

/// <summary>
/// 加载C表
/// </summary>
private static void LoadTableC()
{
//在这里编写具体的业务逻辑...
Console.WriteLine($"当前TableC正在加载中...{Thread.CurrentThread.ManagedThreadId}");
countdownEvent.Signal();
}

C#中的几种锁:用户模式锁、内核模式锁、动态计数、监视锁的更多相关文章

  1. 【windows 操作系统】【CPU】用户模式和内核模式(用户层和内核层)

    所有的现代操作系统中,CPU是在两种不同的模式下运行的: 注意以下内容来自微软: windows用户模式和内核模式 运行 Windows 的计算机中的处理器有两个不同模式:用户模式 和内核模式 . 用 ...

  2. 理解Windows内核模式与用户模式

     1.基础 执行 Windows 的计算机中的处理器有两个不同模式:"用户模式"和"内核模式". 依据处理器上执行的代码的类型,处理器在两个模式之间切换.应 ...

  3. Windows系统的四个重要概念——进程、线程、虚拟内存、内核模式和用户模式

    引言 本来在写一篇Windows内存管理的文章,写着写着就发现好多基础的概念都要先讲.更可怕的是,这些基础的概念我却不能完全讲清楚.只好再把这本<深入解析Windows操作系统>翻到第一章 ...

  4. 如何看待Linux操作系统的用户空间和内核空间

    作为中央核心处理单元的CPU,除了生产工艺的不断革新进步外,在处理数据和响应速度方面也需要有权衡.稍有微机原理基础的人都知道Intel X86体系的CPU提供了四种特权模式ring0~ring3,其中 ...

  5. Linux 用户态和内核态

    1.特权级特权级用来管理和控制程序执行.如Intel x86架构的CPU,有0~3四个特权级,0级最高,3级最低.硬件在执行每条指令时都会检查指令具有的特权级.硬件提供了特权级使用机制,对操作系统来说 ...

  6. 监视锁——Java同步的基本思想

    翻译人员: 铁锚翻译时间: 2013年11月13日原文链接: Monitors – The Basic Idea of Java synchronization如果你上过操作系统课程,你就知道监视锁( ...

  7. 使用WinDbg调试入门(内核模式)

    windbg是一个内核模式和用户模式调试器,包含在Windows调试工具中.这里我们提供了一些实践练习,可以帮助您开始使用windbg作为内核模式调试器. 设置内核模式调试 内核模式调试环境通常有两台 ...

  8. 内核模式构造-Event构造(WaitLock)

    internal sealed class SimpleWaitLock:IDisposable { //Enter()和Leave()中使用m_AutoResetEvent都将迫使调用线程做用户模式 ...

  9. 全面了解Java中的15种锁概念及机制!

    在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类.介绍的内容如下: 1.公平锁 / 非公平锁 2.可重入锁 / 不可重入锁 3.独享锁 / 共享锁 4.互斥锁 / 读 ...

随机推荐

  1. java基础---设计模式(2)

    结构型模式 出处:https://blog.csdn.net/zhangerqing/article/details/8239539 一.适配器模式 适配器模式将某个类的接口转换成客户端期望的另一个接 ...

  2. YAOI Round #1 题解

    前言 比赛网址:http://47.110.12.131:9016/contest/3 总体来说,这次比赛是有一定区分度的, \(\text{ACM}\) 赛制也挺有意思的. 题解 A. 云之彼端,约 ...

  3. [刘阳Java]_SpringMVC与Struts2的对比_第12讲

    今日来具体给讲讲SpringMVC与Struts2的对比,这样方便朋友们在工作中或者是面试学习中对这两者的区别有个更好的了解 把这张图放在这里,我是想说SpringMVC和Struts2真的是不一样的 ...

  4. [刘阳Java]_InternalResourceViewResolver视图解析器_第6讲

    SpringMVC在处理器方法中通常返回的是逻辑视图,如何定位到真正的页面,就需要通过视图解析器 InternalResourceViewResolver是SpringMVC中比较常用视图解析器. 网 ...

  5. js表单插件

    参考:https://www.html5tricks.com/category/jquery-plugin/jquery-form

  6. Linux day2 随堂笔记

    计算机的硬件组成 主机.输入设备.输出设备 一.运维人员的核心职责 1. 企业数据安全 2. 企业业务724运行(不宕机) 3. 企业业务服务率高(用户体验好) 4. 运维人员的工作内容 日常服务器维 ...

  7. 导出数据在exlcel上

    1.前台写一个按钮跳到控制层 <a href="account.do?flag=out" >导出表格</a> 2.控制层导出数据方法 @RequestMap ...

  8. 数据结构与算法(python版)

    ADT抽象数据类型(ADT:Abstract Data Type):ADT是对数据进行处理的一种逻辑描述,并不涉及如何实现这些处理. 同一ADT可以采用不同的数据结构来实现:1.采用程序设计语言的控制 ...

  9. maven 标签 关于<import>标签

      标签用途:在dependecyManagement元素下用,合并此import标签上级dependency的groupId和artid中指向依赖的dependecyManagement内容   标 ...

  10. php 获取上个月的起止时间戳

    $thismonth = date('m'); $thisyear = date('Y'); if ($thismonth == 1) { $lastmonth = 12; $lastyear = $ ...