项目开发环境为Visual Studio 2019 + .Net 5

创建新项目后首先通过Nuget引入相关包:

SciSharp.TensorFlow.Redist是Google提供的TensorFlow开发库,是采用C语言开发的动态链接库(DLL);

TensorFlow.NET采用C#语言对C语言的库进行封装,提供.NET调用接口;

TensorFlow.Keras是一个高级工具类,对建模和训练过程进行封装,提供简便接口。

通过下列语句对库进行引用:

using Tensorflow;

using Tensorflow.NumPy;

using static Tensorflow.Binding;

using static Tensorflow.KerasApi;

下面展示一些TensorFlow.NET的基本类型操作:

       /// <summary>
/// 构建张量
/// </summary>
private void Base_Constant()
{
//通过基本类型构建张量
var c1 = tf.constant(3); // int
var c2 = tf.constant(1.0f); // float
var c3 = tf.constant(2.0); // double
var c4 = tf.constant("Hello Tensorflow.Net!"); // string Console.WriteLine(c1);
Console.WriteLine(c2);
Console.WriteLine(c3);
Console.WriteLine(c4); //通过多维数值构建张量
int[,] arr = new int[,] { { 1, 2, 3 }, { 4, 5, 6 } };
var nd = np.array(arr);
var tensor = tf.constant(nd);
Console.WriteLine(tensor); //构建全0或全1张量
var tensor0 = tf.constant(np.zeros(new Shape(2, 3)));
var tensor1 = tf.constant(np.ones(new Shape(2, 3)));
Console.WriteLine(tensor0);
Console.WriteLine(tensor1); var tensor_0 = tf.zeros(new Shape(2, 3));
var tensor_1 = tf.ones(new Shape(2, 3));
Console.WriteLine(tensor_0);
Console.WriteLine(tensor_1);
} /// <summary>
/// 张量运算
/// </summary>
private void Base_Operator()
{
var a = tf.constant(2.0f);
var b = tf.constant(3.0f);
var c = tf.constant(5.0f); // 基本运算,可以采+ - * / 等运算符
var add = tf.add(a, b);
var sub = tf.subtract(a, b);
var mul = tf.multiply(a, b);
var div = tf.divide(a, b); print($"{(float)a} + {(float)b} = {(float)add}");
print($"{(float)a} - {(float)b} = {(float)sub}");
print($"{(float)a} * {(float)b} = {(float)mul}");
print($"{(float)a} / {(float)b} = {(float)div}"); // 求平均、求和
var mean = tf.reduce_mean(tf.constant(new[] { a, b, c }));
var sum = tf.reduce_sum(tf.constant(new[] { a, b, c }));
print("mean =", mean.numpy());
print("sum =", sum.numpy()); // 矩阵相乘
var matrix1 = tf.constant(new float[,] { { 1, 2, 3 }, { 3, 4, 5 } });
var matrix2 = tf.constant(new float[,] { { 3, 4 }, { 5, 6 }, { 7, 8 } });
var product1 = tf.matmul(matrix1, matrix2);
print("product1 =", product1.numpy());
} /// <summary>
/// 生成随机数张量
/// </summary>
private void Base_Random()
{
var t1 = tf.random.normal(new Shape(10));
var t2 = tf.random.uniform(new Shape(2, 5));
var t3 = tf.random.uniform(new Shape(2, 5), 1, 100); Console.WriteLine($"t1={t1.numpy()}");
Console.WriteLine($"t2={t2.numpy()}");
Console.WriteLine($"t3={t3.numpy()}"); t1 = tf.random.normal(new Shape(100), mean: 0.5f, stddev: 2);
var mean = tf.reduce_mean(t1);
var max = tf.reduce_max(t1);
var min = tf.reduce_min(t1);
Console.WriteLine($"mean={mean.numpy()},max={max.numpy()},min={min.numpy()}");
}

上述代码基本都比较简单,基本一看就能懂,有几处需要解释一下:

1、平常我们在生成随机数时,一般都是平均分布,但机器学习的数据更多趋向正态分布,所以采用normal生成随机数,mean表示中心点,stddev表示分布范围;

2、从表面看tf的框架似乎提供了一套可以进行矩阵运算的Math库,但实际并非如此,tf框架的核心是可以计算运算的梯度,这个问题我们后面再讲;

3、tf有两个版本,V1版和V2版本,如果要使用V1版本语法,需要在代码之前加一句:tf.compat.v1.disable_eager_execution();

相对的,V2版本为:tf.enable_eager_execution();由于默认为V2版本,所以这行代码可以省略不写。

本系列的所有代码均采用V2版本。官方提供的样例里有大量V1版本代码,有一些V2版没有提供的功能,可能不得不采用V1版代码实现。

【参考资料】

TensorFlow教程:TensorFlow快速入门教程

【项目源码】

Git: https://gitee.com/seabluescn/tf_not.git

项目名称:SayHello

目录:TensorFlow.NET机器学习入门系列目录

TensorFlow.NET机器学习入门【1】开发环境与类型简介的更多相关文章

  1. TensorFlow.NET机器学习入门【0】前言与目录

    曾经学习过一段时间ML.NET的知识,ML.NET是微软提供的一套机器学习框架,相对于其他的一些机器学习框架,ML.NET侧重于消费现有的网络模型,不太好自定义自己的网络模型,底层实现也做了高度封装. ...

  2. TensorFlow.NET机器学习入门【8】采用GPU进行学习

    随着网络越来约复杂,训练难度越来越大,有条件的可以采用GPU进行学习.本文介绍如何在GPU环境下使用TensorFlow.NET. TensorFlow.NET使用GPU非常的简单,代码不用做任何修改 ...

  3. TensorFlow.NET机器学习入门【2】线性回归

    回归分析用于分析输入变量和输出变量之间的一种关系,其中线性回归是最简单的一种. 设: Y=wX+b,现已知一组X(输入)和Y(输出)的值,要求出w和b的值. 举个例子:快年底了,销售部门要发年终奖了, ...

  4. TensorFlow.NET机器学习入门【3】采用神经网络实现非线性回归

    上一篇文章我们介绍的线性模型的求解,但有很多模型是非线性的,比如: 这里表示有两个输入,一个输出. 现在我们已经不能采用y=ax+b的形式去定义一个函数了,我们只能知道输入变量的数量,但不知道某个变量 ...

  5. TensorFlow.NET机器学习入门【4】采用神经网络处理分类问题

    上一篇文章我们介绍了通过神经网络来处理一个非线性回归的问题,这次我们将采用神经网络来处理一个多元分类的问题. 这次我们解决这样一个问题:输入一个人的身高和体重的数据,程序判断出这个人的身材状况,一共三 ...

  6. TensorFlow.NET机器学习入门【5】采用神经网络实现手写数字识别(MNIST)

    从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png. ...

  7. TensorFlow.NET机器学习入门【6】采用神经网络处理Fashion-MNIST

    "如果一个算法在MNIST上不work,那么它就根本没法用:而如果它在MNIST上work,它在其他数据上也可能不work". -- 马克吐温 上一篇文章我们实现了一个MNIST手 ...

  8. TensorFlow.NET机器学习入门【7】采用卷积神经网络(CNN)处理Fashion-MNIST

    本文将介绍如何采用卷积神经网络(CNN)来处理Fashion-MNIST数据集. 程序流程如下: 1.准备样本数据 2.构建卷积神经网络模型 3.网络学习(训练) 4.消费.测试 除了网络模型的构建, ...

  9. PHP入门教程-开发环境搭建

    1.PHP简介: PHP是能让你生成动态网页的工具之一.PHP网页文件被当作一般HTML网页文件来处理并且在编辑时你可以用编辑HTML的常规方法编写PHP. 2.学习需要基础: a.HTML b.Ja ...

随机推荐

  1. Qt Creator 源码学习笔记03,大型项目如何管理工程

    阅读本文大概需要 6 分钟 一个项目随着功能开发越来越多,项目必然越来越大,工程管理成本也越来越高,后期维护成本更高.如何更好的组织管理工程,是非常重要的 今天我们来学习下 Qt Creator 是如 ...

  2. 快速沃尔什变换&快速莫比乌斯变换小记

    u1s1 距离省选只剩 5 days 了,现在学新算法真的合适吗(( 位运算卷积 众所周知,对于最普通的卷积 \(c_i=\sum\limits_{j+k=i}a_jb_k\),\(a_jb_k\) ...

  3. Atcoder Regular Contest 072 C - Alice in linear land(思维题)

    Atcoder 题面传送门 & 洛谷题面传送门 首先求出 \(s_i\) 表示经过 \(i\) 次操作后机器人会位于什么位置,显然 \(s_0=D\),\(s_i=\min(s_{i-1},| ...

  4. 富集分析DAVID、Metascape、Enrichr、ClueGO

    前言 一般我们挑出一堆感兴趣的基因想临时看看它们的功能,需要做个富集分析.虽然公司买了最新版的数据库,如KEGG,但在集群跑下来嫌麻烦.这时网页在线或者本地化工具派上用场了. DAVID DAVID地 ...

  5. shell 脚本自动插入文件头

    vim编辑shell脚本自动插入文件头部信息,将下面的代码写入home目录xia .vimrc 文件即可. shell 文件头: 1 autocmd BufNewFile *.sh exec &quo ...

  6. Excel-转换单元格格式的函数或“方法”汇总

    14.转换单元格格式的函数或"方法"汇总 =value(单元格)  #转换为数值 =A1&""                   #转换A1为文本 = ...

  7. c#跳转

    Response.Redirect(EditUrl("MEUID", lblMEUID.Text, "Page2", "PageOneMK" ...

  8. 前端1 — HTML — 更新完毕

    1.首先来了解一个东西 -- W3C标准( 全称是:World Wide Web Consortium ) 万维网联盟(外语缩写:W3C)标准不是某一个标准,而是一系列标准的集合 -- 这个其实每天都 ...

  9. 学习java 7.3

    学习内容:定义类不需要加static 成员方法在多个对象时是可以共用的,而成员变量不可以共用,多个对象指向一个内存时,改变变量的值,对象所在的类中的变量都会改变 成员变量前加private,成员方法前 ...

  10. adult

    adult是adolescere (grow up)的过去分词. egg - embryo [胚胎] - foetus [就要出生的胎儿] - toddler [刚会走路] - adolescent ...