CF1513F Swapping Problem(模型转化)
题目描述
You are given 2 arrays a a a and b b b , both of size n n n . You can swap two elements in b b b at most once (or leave it as it is), and you are required to minimize the value $$\sum_{i}|a_{i}-b_{i}|. $$
Find the minimum possible value of this sum.
输入格式
The first line contains a single integer n n n ( 1≤n≤2⋅105 1 \le n \le 2 \cdot 10^5 1≤n≤2⋅105 ).
The second line contains n n n integers a1,a2,…,an a_1, a_2, \ldots, a_n a1,a2,…,an ( 1≤ai≤109 1 \le a_i \le {10^9} 1≤ai≤109 ).
The third line contains n n n integers b1,b2,…,bn b_1, b_2, \ldots, b_n b1,b2,…,bn ( 1≤bi≤109 1 \le b_i \le {10^9} 1≤bi≤109 ).
输出格式
Output the minimum value of ∑i∣ai−bi∣ \sum_{i}|a_{i}-b_{i}| ∑i∣ai−bi∣ .
题意翻译
给定 nnn 和两个长度为 nnn 的数组 a,ba,ba,b,最多交换一次 bbb 中的两个位置的值(可以不交换)。
最小化 ∑i=1n∣ai−bi∣\sum_{i=1}^{n}|a_i-b_i|∑i=1n∣ai−bi∣。
n≤2×105n \le 2\times10^5n≤2×105;ai,bi≤109a_i,b_i\le 10^9ai,bi≤109。
输入输出样例
5
5 4 3 2 1
1 2 3 4 5
4
2
1 3
4 2
2
说明/提示
In the first example, we can swap the first and fifth element in array b b b , so that it becomes [5,2,3,4,1] [ 5, 2, 3, 4, 1 ] [5,2,3,4,1] .
Therefore, the minimum possible value of this sum would be ∣5−5∣+∣4−2∣+∣3−3∣+∣2−4∣+∣1−1∣=4 |5-5| + |4-2| + |3-3| + |2-4| + |1-1| = 4 ∣5−5∣+∣4−2∣+∣3−3∣+∣2−4∣+∣1−1∣=4 .
In the second example, we can swap the first and second elements. So, our answer would be 2 2 2 .
题解
可以很容易的计算出 \(ans = \sum_{i=1}^n |a_i-b_i|\) 的值,但是我们需要交换一对,使得 ans 尽量小
假设交换 \(i,j\) 这两对,那么此时的答案应该为
\]
要找的这两对应该满足
\]
而且前者越大越好,后者越小越好,题目就像是一道二维偏序一样,解决的思路就是先确定一维
看着这满屏的绝对值,自然而然地想到了距离,不妨自己画一下发现,当
b_j<a_i<a_j<b_i \\
a_i<b_j<a_j<b_i \\
b_j<a_i<b_i<a_j
\]
上述情况满足时上面的不等式才会成立(当然以上只有 \(a_i<b_i\) 的情况,还有四种情况,请读者自己思考)
这样就拥有了降维的理由,我们可以按照 \(b\) 排序,这样固定了右端点,根据上述推断可以造成贡献的有
\]
为了满足区间的要求,需要进一步转化为右端点\(\geq\)左端点
而根据贪心,固定右端点应该按照 \(b\) 升序排列,这样可以满足
\]
所以要计算的 \(|b_j-a_i|\) 由于 \(b_j\) 的确定,只要保留之前 \(a_i\) 的最小值就可以了
总体算法复杂度 \(O(NlogN)\) 为排序的时间
const int N=3e5+5;
int n, m, _;
int i, j, k;
ll a[N];
ll b[N];
struct Node
{
ll x, y;
bool operator<(Node o){
return x<o.x;
}
int tag;
Node(ll x = 0, ll y = 0, int tag = 0) : x(x), y(y), tag(tag){}
}p[N];
signed main()
{
//IOS;
while(~sd(n)){
ll ans = 0;
rep(i, 1, n) sll(a[i]);
rep(i, 1, n) sll(b[i]), ans += abs(a[i] - b[i]);
rep(i, 1, n){
if(a[i] <= b[i]) p[i] = Node(a[i], b[i], 0);
else p[i] = Node(b[i], a[i], 1);
}
sort(p + 1, p + 1 + n);
ll maxx = 0;
ll ed[2] = {0, 0};
rep(i, 1, n){
ed[p[i].tag] = max(ed[p[i].tag], p[i].y);
if(!ed[p[i].tag ^ 1]) continue;
if(p[i].x <= ed[p[i].tag ^ 1]){
if(p[i].y <= ed[p[i].tag ^ 1]){
maxx = max(maxx, p[i].y - p[i].x);
continue;
}
maxx = max(maxx, ed[p[i].tag ^ 1] - p[i].x);
}
}
pll(ans - maxx * 2);
}
//PAUSE;
return 0;
}
CF1513F Swapping Problem(模型转化)的更多相关文章
- tyvj P1209 - 拦截导弹 平面图最小割&&模型转化
P1209 - 拦截导弹 From admin Normal (OI)总时限:6s 内存限制:128MB 代码长度限制:64KB 背景 Background 实中编程者联盟为了培养技 ...
- 【2019雅礼集训】【可持久化线段树】【模型转化】D1T2Permutation
目录 题意 输入格式 输出格式 思路 代码 题意 给定一个长度为n的序列A[],你需要确定一个长度为n的排列P[],定义当前排列的值为: \[\sum_{i=1}^{n}{A[i]P[i]}\] 现在 ...
- LOJ 3056 「HNOI2019」多边形——模型转化+树形DP
题目:https://loj.ac/problem/3056 只会写暴搜.用哈希记忆化之类的. #include<cstdio> #include<cstring> #incl ...
- [bzoj4567][Scoi2016]背单词-Trie+贪心+模型转化
Brief Description 给你N个互不相同的字符串,记\(S_i\)为第i个字符串,现在要求你指定N个串的出现顺序,我们用\(V_i\)表示第i个字符串是第几个出现的,则V为1到N的一个排列 ...
- Wannafly挑战赛26-F. msc的棋盘(模型转化+dp)及一类特殊的网络流问题
题目链接 https://www.nowcoder.com/acm/contest/212/F 题解 我们先考虑如果已知了数组 \(\{a_i\}\) 和 \(\{b_i\}\),如何判断其是否合法. ...
- LOJ 2719 「NOI2018」冒泡排序——模型转化
题目:https://loj.ac/problem/2719 首先要发现合法的充要条件是 | LDS | <=2 ! 因为有没用的步数,说明一个元素先往左移.又往右移(不会先往右移再往左移,因为 ...
- Allegro 反射仿真--IBIS模型转化
一.IBIS模型的获取 a) 直接找芯片供应商 b) 从网上下载 i.到Google网站直接搜索某个型号的IBIS模型: ii. 到器件厂商的官方网站下载: iii.从专门提供IBIS模型的网站搜索下 ...
- 【AtCoder】【模型转化】【二分答案】Median Pyramid Hard(AGC006)
题意: 给你一个排列,有2*n-1个元素,现在进行以下的操作: 每一次将a[i]替换成为a[i-1],a[i],a[i+1]三个数的中位数,并且所有的操作是同时进行的,也就是说这一次用于计算的a[], ...
- 【AtCoder】【模拟】【模型转化】Camel and Oases(AGC012)
题意: 有一个骆驼,n个绿洲遍布在数轴上,第i个绿洲的坐标为x[i],保证x[i]单增.骆驼的驼峰有体积初始值V.当驼峰的体积变为v的时候,驼峰中至多只能够存储v L的水.骆驼希望走完所有的绿洲,并且 ...
随机推荐
- python对BP神经网络实现
python对BP神经网络实现 一.概念理解 开始之前首先了解一下BP神经网络,BP的英文是back propagationd的意思,它是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称 ...
- Kafka2.8安装
1.概述 最近Kafka官网发布了2.8版本,在该版本中引入了KRaft模式.鉴于新版本和新特性的引入,相关使用资料较少,那边本篇博客笔者将为大家介绍Kafka2.8的安装和使用. 2.内容 2.1 ...
- 如何使用Vue中的slot
之前看官方文档,由于自己理解的偏差,不知道slot是干嘛的,看到小标题,使用Slot分发内容,就以为 是要往下派发内容.然后就没有理解插槽的概念.其实说白了,使用slot就是先圈一块地,将来可能种花种 ...
- pc/shouji/weixin判断跳转
pc 和 手机端 判断 function IsPC() { var userAgentInfo = navigator.userAgent; var Agents = ["Android&q ...
- 【swagger】 swagger-ui的升级版swagger-bootstrap-ui
swagger-bootstrap-ui是基于swagger-ui做了一些优化拓展: swagger-ui的界面: swagger-bootstrap-ui界面: 相比于原生的swagger-ui , ...
- YII框架安装步骤(yii框架版本1.1.20,时间是2018/11)
0x01 首先中文官网下载https://www.yiichina.com/download 0x02 解压压缩包到www目录下(方便以后调试) 0x02-1 如果想看一下你的电脑是否能匹配yii框架 ...
- [CTF]跳舞的小人
[CTF]跳舞的小人 来自夏洛克福尔摩斯在<归来记>中侦探案件使用的一种加密方式. 对应的明文是 AT ELRIGES (住在埃尔里奇) COME ELSIE (来吧 埃尔茜) NEVER ...
- Spring SPI 机制总结
1.概念: SPI(Service Provider Interface)服务提供接口,简单来说就是用来解耦,实现插件的自由插拔,具体实现方案可参考JDK里的ServiceLoader(加载class ...
- Learning Memory-guided Normality代码学习笔记
Learning Memory-guided Normality代码学习笔记 记忆模块核心 Memory部分的核心在于以下定义Memory类的部分. class Memory(nn.Module): ...
- 【python】Leetcode每日一题-搜索排序数组2
[python]Leetcode每日一题-搜索排序数组2 [题目描述] 已知存在一个按非降序排列的整数数组 nums ,数组中的值不必互不相同. 在传递给函数之前,nums 在预先未知的某个下标 k( ...